
Martin Cammarota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2711-2716.	7.1	559
2	Persistence of Long-Term Memory Storage Requires a Late Protein Synthesis- and BDNF- Dependent Phase in the Hippocampus. Neuron, 2007, 53, 261-277.	8.1	550
3	Physiology of the Prion Protein. Physiological Reviews, 2008, 88, 673-728.	28.8	523
4	Different molecular cascades in different sites of the brain control memory consolidation. Trends in Neurosciences, 2006, 29, 496-505.	8.6	404
5	Dopamine Controls Persistence of Long-Term Memory Storage. Science, 2009, 325, 1017-1020.	12.6	384
6	BDNF and memory processing. Neuropharmacology, 2014, 76, 677-683.	4.1	296
7	Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Molecular Brain Research, 2000, 76, 36-46.	2.3	265
8	Reviews: BDNF and Memory Formation and Storage. Neuroscientist, 2008, 14, 147-156.	3.5	260
9	On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learning and Memory, 2007, 14, 36-46.	1.3	235
10	BDNF Activates mTOR to Regulate GluR1 Expression Required for Memory Formation. PLoS ONE, 2009, 4, e6007.	2.5	230
11	Plastic modifications induced by object recognition memory processing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2652-2657.	7.1	220
12	mTOR signaling in the hippocampus is necessary for memory formation. Neurobiology of Learning and Memory, 2007, 87, 303-307.	1.9	163
13	Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 349-354.	7.1	136
14	Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. European Journal of Neuroscience, 1998, 10, 2669-2676.	2.6	121
15	Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learning and Memory, 2005, 12, 504-510.	1.3	112
16	Further evidence for the involvement of a hippocampal cGMP/cGMP-dependent protein kinase cascade in memory consolidation. NeuroReport, 1997, 8, 2221-2224.	1.2	109
17	The Vesicular Acetylcholine Transporter Is Required for Neuromuscular Development and Function. Molecular and Cellular Biology, 2009, 29, 5238-5250.	2.3	105
18	Retrieval Does Not Induce Reconsolidation of Inhibitory Avoidance Memory. Learning and Memory, 2004, 11, 572-578.	1.3	104

#	Article	IF	CITATIONS
19	On the participation of mTOR in recognition memory. Neurobiology of Learning and Memory, 2008, 89, 338-351.	1.9	103
20	Inhibition of hippocampal Jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. European Journal of Neuroscience, 2003, 17, 897-902.	2.6	98
21	Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learning and Memory, 2006, 13, 431-440.	1.3	98
22	Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. European Journal of Neuroscience, 2004, 20, 3063-3072.	2.6	92
23	Cyclic AMP-Responsive Element Binding Protein in Brain Mitochondria. Journal of Neurochemistry, 2002, 72, 2272-2277.	3.9	81
24	Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiology of Learning and Memory, 2008, 90, 374-381.	1.9	81
25	Inhibition of mRNA and Protein Synthesis in the CA1 Region of the Dorsal Hippocampus Blocks Reinstallment of an Extinguished Conditioned Fear Response. Journal of Neuroscience, 2003, 23, 737-741.	3.6	80
26	Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism. Psychopharmacology, 2005, 179, 529-535.	3.1	79
27	On the participation of hippocampal PKC in acquisition, consolidation and reconsolidation of spatial memory. Neuroscience, 2007, 147, 37-45.	2.3	79
28	Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiology of Disease, 2007, 26, 282-290.	4.4	77
29	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. Neurotoxicity Research, 2010, 18, 377-385.	2.7	76
30	Angiotensin II disrupts inhibitory avoidance memory retrieval. Hormones and Behavior, 2006, 50, 308-313.	2.1	73
31	Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine. International Journal of Developmental Neuroscience, 2009, 27, 59-64.	1.6	71
32	Consolidation of object recognition memory requires simultaneous activation of dopamine D1/D5 receptors in the amygdala and medial prefrontal cortex but not in the hippocampus. Neurobiology of Learning and Memory, 2013, 106, 66-70.	1.9	67
33	The interaction between prion protein and laminin modulates memory consolidation. European Journal of Neuroscience, 2006, 24, 3255-3264.	2.6	66
34	Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?. Neural Plasticity, 2015, 2015, 1-14.	2.2	65
35	Physical exercise can reverse the deficit in fear memory induced by maternal deprivation. Neurobiology of Learning and Memory, 2009, 92, 364-369.	1.9	64
36	Memory consolidation induces N-methyl-d-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Neuroscience, 2005, 136, 397-403.	2.3	63

#	Article	IF	CITATIONS
37	D1/D5 dopamine receptors modulate spatial memory formation. Neurobiology of Learning and Memory, 2012, 97, 271-275.	1.9	63
38	Molecular signatures and mechanisms of long-lasting memory consolidation and storage. Neurobiology of Learning and Memory, 2013, 106, 40-47.	1.9	63
39	Retrograde Amnesia Induced by Drugs Acting on Different Molecular Systems Behavioral Neuroscience, 2004, 118, 563-568.	1.2	61
40	Histamine enhances inhibitory avoidance memory consolidation through a H2 receptor-dependent mechanism. Neurobiology of Learning and Memory, 2006, 86, 100-106.	1.9	61
41	The connection between the hippocampal and the striatal memory systems of the brain: A review of recent findings. Neurotoxicity Research, 2006, 10, 113-121.	2.7	60
42	Early Activation of Extracellular Signal-Regulated Kinase Signaling Pathway in the Hippocampus is Required for Short-Term Memory Formation of a Fear-Motivated Learning. Cellular and Molecular Neurobiology, 2006, 26, 81-6.	3.3	59
43	βâ€Adrenergic receptors link NO/sGC/PKG signaling to BDNF expression during the consolidation of object recognition longâ€ŧerm memory. Hippocampus, 2010, 20, 672-683.	1.9	59
44	Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiology of Learning and Memory, 2005, 83, 217-223.	1.9	58
45	Do memories consolidate to persist or do they persist to consolidate?. Behavioural Brain Research, 2008, 192, 61-69.	2.2	58
46	Gastrin-releasing Peptide Receptor Antagonist Effects on an Animal Model of Sepsis. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 84-90.	5.6	57
47	B-50/GAP-43 phosphorylation and PKC activity are increased in rat hippocampal synaptosomal membranes after an inhibitory avoidance training. Neurochemical Research, 1997, 22, 499-505.	3.3	56
48	Participation of CaMKII in neuronal plasticity and memory formation. Cellular and Molecular Neurobiology, 2002, 22, 259-267.	3.3	56
49	Effects of acute and chronic physical exercise and stress on different types of memory in rats. Anais Da Academia Brasileira De Ciencias, 2008, 80, 301-309.	0.8	56
50	Requirement for BDNF in the Reconsolidation of Fear Extinction. Journal of Neuroscience, 2015, 35, 6570-6574.	3.6	55
51	Inhibitory Avoidance Training Induces Rapid and Selective Changes in3[H]AMPA Receptor Binding in the Rat Hippocampal Formation. Neurobiology of Learning and Memory, 1995, 64, 257-264.	1.9	54
52	Retrieval and the Extinction of Memory. Cellular and Molecular Neurobiology, 2005, 25, 465-474.	3.3	53
53	Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. Genes, Brain and Behavior, 2009, 8, 23-35.	2.2	53
54	Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochemical Research, 2000, 25, 567-572.	3.3	52

4

#	Article	IF	CITATIONS
55	On the role of retrosplenial cortex in longâ€lasting memory storage. Hippocampus, 2013, 23, 295-302.	1.9	52
56	Inhibition of mRNA synthesis in the hippocampus impairs consolidation and reconsolidation of spatial memory. Hippocampus, 2008, 18, 29-39.	1.9	50
57	Involvement of hippocampal PKCβI isoform in the early phase of memory formation of an inhibitory avoidance learning. Brain Research, 2000, 855, 199-205.	2.2	49
58	BDNF controls object recognition memory reconsolidation. Neurobiology of Learning and Memory, 2017, 142, 79-84.	1.9	49
59	Learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to protein kinase C in selected regions of the rat brain. Brain Research, 1995, 685, 163-168.	2.2	47
60	NEUROSCIENCE: Zif and the Survival of Memory. Science, 2004, 304, 829-830.	12.6	47
61	Parallel memory processing by the CA1 region of the dorsal hippocampus and the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10279-10284.	7.1	47
62	Different time course for the memory facilitating effect of bicuculline in hippocampus, entorhinal cortex, and posterior parietal cortex of rats. Neurobiology of Learning and Memory, 2004, 82, 52-56.	1.9	46
63	A link between role of two prefrontal areas in immediate memory and in long-term memory consolidation. Neurobiology of Learning and Memory, 2007, 88, 160-166.	1.9	46
64	Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine, 2010, 17, 698-701.	5.3	46
65	AMPA/kainate and group-I metabotropic receptor antagonists infused into different brain areas impair memory formation of inhibitory avoidance in rats. Behavioural Pharmacology, 2003, 14, 161-166.	1.7	43
66	The entorhinal cortex plays a role in extinction. Neurobiology of Learning and Memory, 2006, 85, 192-197.	1.9	43
67	Pharmacological Findings on the Biochemical Bases of Memory Processes: A General View. Neural Plasticity, 2004, 11, 159-189.	2.2	42
68	Retinol induces the ERK1/2-dependent phosphorylation of CREB through a pathway involving the generation of reactive oxygen species in cultured Sertoli cells. Cellular Signalling, 2006, 18, 1685-1694.	3.6	42
69	Relationship between short- and long-term memory and short- and long-term extinction. Neurobiology of Learning and Memory, 2005, 84, 25-32.	1.9	41
70	On the participation of hippocampal p38 mitogen-activated protein kinase in extinction and reacquisition of inhibitory avoidance memory. Neuroscience, 2006, 143, 15-23.	2.3	41
71	Phosphorylation of CaMKII at Thr253 occurs in vivo and enhances binding to isolated postsynaptic densities. Journal of Neurochemistry, 2006, 98, 289-299.	3.9	41
72	Neonatal handling and the maternal odor preference in rat pups: Involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb. Neuroscience, 2009, 159, 31-38.	2.3	41

#	Article	IF	CITATIONS
73	Histamine facilitates consolidation of fear extinction. International Journal of Neuropsychopharmacology, 2011, 14, 1209-1217.	2.1	41
74	Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats. Life Sciences, 2011, 89, 229-234.	4.3	40
75	Temporary inactivation of the dorsal hippocampus induces a transient impairment in retrieval of aversive memory. Behavioural Brain Research, 2007, 180, 113-118.	2.2	39
76	Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory. Neurobiology of Learning and Memory, 2009, 91, 466-472.	1.9	39
77	Medial prefrontal cortex is a crucial node of a rapid learning system that retrieves recent and remote memories. Neurobiology of Learning and Memory, 2013, 103, 19-25.	1.9	39
78	State-dependent effect of dopamine D1/D5 receptors inactivation on memory destabilization and reconsolidation. Behavioural Brain Research, 2015, 285, 194-199.	2.2	39
79	Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism. Journal of Neurochemistry, 2002, 79, 1122-1128.	3.9	38
80	Functional integrity of the retrosplenial cortex is essential for rapid consolidation and recall of fear memory. Learning and Memory, 2013, 20, 170-173.	1.3	38
81	Reversible Changes in Hippocampal3H-AMPA Binding Following Inhibitory Avoidance Training in the Rat. Neurobiology of Learning and Memory, 1996, 66, 85-88.	1.9	37
82	Retrieval induces reconsolidation of fear extinction memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21801-21805.	7.1	36
83	ERK1/2 and CaMKII-mediated events in memory formation: Is 5HT regulation involved?. Behavioural Brain Research, 2008, 195, 120-128.	2.2	35
84	Photic control of nitric oxide synthase activity in the hamster suprachiasmatic nuclei. Brain Research, 1998, 797, 190-196.	2.2	34
85	The inhibition of acquired fear. Neurotoxicity Research, 2004, 6, 175-188.	2.7	34
86	Extinction and reacquisition of a fear-motivated memory require activity of the Src family of tyrosine kinases in the CA1 region of the hippocampus. Pharmacology Biochemistry and Behavior, 2005, 81, 139-145.	2.9	34
87	The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotoxicity Research, 2008, 14, 273-294.	2.7	34
88	The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. Anais Da Academia Brasileira De Ciencias, 2008, 80, 115-127.	0.8	33
89	Medial prefrontal cortex dopamine controls the persistent storage of aversive memories. Frontiers in Behavioral Neuroscience, 2014, 8, 408.	2.0	33
90	On the Involvement of BDNF Signaling in Memory Reconsolidation. Frontiers in Cellular Neuroscience, 2019, 13, 383.	3.7	33

#	Article	IF	CITATIONS
91	Experience-dependent increase in cAMP-responsive element binding protein in synaptic and nonsynaptic mitochondria of the rat hippocampus. European Journal of Neuroscience, 1999, 11, 3753-3756.	2.6	31
92	Memory formation requires p38MAPK activity in the rat hippocampus. NeuroReport, 2003, 14, 1989-1992.	1.2	30
93	Learning twice is different from learning once and from learning more. Neuroscience, 2005, 132, 273-279.	2.3	30
94	Age-dependent and age-independent human memory persistence is enhanced by delayed posttraining methylphenidate administration. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19504-19507.	7.1	30
95	Histamine activates tyrosine hydroxylase in bovine adrenal chromaffin cells through a pathway that involves ERK1/2 but not p38 or JNK. Journal of Neurochemistry, 2003, 84, 453-458.	3.9	29
96	Role of protein phosphatase 2C from bovine adrenal chromaffin cells in the dephosphorylation of phospho-serine 40 tyrosine hydroxylase. Journal of Neurochemistry, 2003, 85, 1368-1373.	3.9	29
97	A link between the hippocampal and the striatal memory systems of the brain. Anais Da Academia Brasileira De Ciencias, 2006, 78, 515-523.	0.8	29
98	Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicology in Vitro, 2008, 22, 1205-1212.	2.4	29
99	The extinction of conditioned fear: structural and molecular basis and therapeutic use. Revista Brasileira De Psiquiatria, 2007, 29, 80-85.	1.7	29
100	Early Activation of Extracellular Signal-Regulated Kinase Signaling Pathway in the Hippocampus is Required for Short-Term Memory Formation of a Fear-Motivated Learning. Cellular and Molecular Neurobiology, 2006, 26, 987-1000.	3.3	28
101	Hippocampal glutamate receptors in fear memory consolidation. Neurotoxicity Research, 2004, 6, 205-211.	2.7	27
102	Neonatal handling alters the structure of maternal behavior and affects mother–pup bonding. Behavioural Brain Research, 2014, 265, 216-228.	2.2	27
103	Consolidation of object recognition memory requires HRI kinaseâ€dependent phosphorylation of elF2α in the hippocampus. Hippocampus, 2013, 23, 431-436.	1.9	26
104	Decreased acetylcholine release delays the consolidation of object recognition memory. Behavioural Brain Research, 2013, 238, 62-68.	2.2	26
105	Cross-Frequency Phase-Amplitude Coupling between Hippocampal Theta and Gamma Oscillations during Recall Destabilizes Memory and Renders It Susceptible to Reconsolidation Disruption. Journal of Neuroscience, 2020, 40, 6398-6408.	3.6	25
106	Inhibition of PKC in basolateral amygdala and posterior parietal cortex impairs consolidation of inhibitory avoidance memory. Pharmacology Biochemistry and Behavior, 2005, 80, 63-67.	2.9	24
107	PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. Journal of Neuroscience, 2019, 39, 1828-1841.	3.6	23
108	Different Effect of High Fat Diet and Physical Exercise in the Hippocampal Signaling. Neurochemical Research, 2008, 33, 880-885.	3.3	22

#	Article	IF	CITATIONS
109	Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation. Neurobiology of Learning and Memory, 2012, 97, 54-58.	1.9	21
110	Prior Learning of Relevant Nonaversive Information Is a Boundary Condition for Avoidance Memory Reconsolidation in the Rat Hippocampus. Journal of Neuroscience, 2017, 37, 9675-9685.	3.6	21
111	Memory retrieval and its lasting consequences. Neurotoxicity Research, 2002, 4, 573-593.	2.7	20
112	Effects of early malnutrition, isolation and seizures on memory and spatial learning in the developing rat. International Journal of Developmental Neuroscience, 2010, 28, 303-307.	1.6	20
113	Src kinase activity is required for avoidance memory formation and recall. Behavioural Pharmacology, 2003, 14, 649-652.	1.7	19
114	On the requirement of nitric oxide signaling in the amygdala for consolidation of inhibitory avoidance memory. Neurobiology of Learning and Memory, 2009, 91, 266-272.	1.9	18
115	The transition from memory retrieval to extinction. Anais Da Academia Brasileira De Ciencias, 2004, 76, 573-582.	0.8	17
116	Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation. Neurobiology of Learning and Memory, 2015, 125, 146-151.	1.9	17
117	The Role of the Entorhinal Cortex in Extinction: Influences of Aging. Neural Plasticity, 2008, 2008, 1-8.	2.2	16
118	GluN2B and GluN2A-containing NMDAR are differentially involved in extinction memory destabilization and restabilization during reconsolidation. Scientific Reports, 2021, 11, 186.	3.3	16
119	Src family tyrosine kinases differentially modulate exocytosis from rat brain nerve terminals. Neurochemistry International, 2006, 49, 80-86.	3.8	15
120	Inhibition of c-Jun N-terminal kinase in the CA1 region of the dorsal hippocampus blocks extinction of inhibitory avoidance memory. Behavioural Pharmacology, 2007, 18, 483-489.	1.7	15
121	Nicotine modulates the long-lasting storage of fear memory. Learning and Memory, 2013, 20, 120-124.	1.3	15
122	Maturational Changes in the Subunit Composition of AMPA Receptors and the Functional Consequences of Their Activation in Chicken Forebrain. Developmental Neuroscience, 2007, 29, 232-240.	2.0	14
123	Recognition memory reconsolidation requires hippocampal Zif268. Scientific Reports, 2019, 9, 16620.	3.3	14
124	Dopamine controls whether new declarative information updates reactivated memories through reconsolidation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
125	Reconsolidation and the fate of consolidated memories. Neurotoxicity Research, 2008, 14, 353-358.	2.7	13
126	Experience-dependent decrease in synaptically localized Fra-1. Molecular Brain Research, 2000, 78, 120-130.	2.3	11

#	Article	IF	CITATIONS
127	A arte de esquecer. Estudos Avancados, 2006, 20, 289-296.	0.5	11
128	mTOR inhibition impairs extinction memory reconsolidation. Learning and Memory, 2021, 28, 1-6.	1.3	10
129	Autonomous activity and autophosphorylation of CAMPK-II in rat hippocampal slices: effects of tissue preparation. Journal of Neurochemistry, 2009, 76, 149-154.	3.9	9
130	Biochemical, behavioural and electrophysiological investigations of brain maturation in chickens. Brain Research Bulletin, 2008, 76, 217-223.	3.0	8
131	The growth of glioblastoma orthotopic xenografts in nude mice is directly correlated with impaired object recognition memory. Physiology and Behavior, 2014, 123, 55-61.	2.1	8
132	Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease. European Archives of Psychiatry and Clinical Neuroscience, 2016, 266, 607-618.	3.2	8
133	The extinction of conditioned fear: structural and molecular basis and therapeutic use. Revista Brasileira De Psiquiatria, 2007, 29, 80-5.	1.7	7
134	Topiramate diminishes fear memory consolidation and extinguishes conditioned fear in rats. Journal of Psychiatry and Neuroscience, 2011, 36, 250-255.	2.4	5
135	Pharmacological Studies of the Molecular Basis of Memory Extinction. Current Neuropharmacology, 2003, 1, 89-98.	2.9	5
136	Optogenetic inactivation of the medial septum impairs long-term object recognition memory formation. Molecular Brain, 2022, 15, .	2.6	5
137	Extinction learning: neurological features, therapeutic applications and the effect of aging. Future Neurology, 2008, 3, 133-140.	0.5	4
138	PERK, mTORC1 and eEF2 interplay during long term potentiation. Journal of Neurochemistry, 2018, 146, 119-121.	3.9	3
139	Reactivation-dependent amnesia for object recognition memory is contingent on hippocampal theta–gamma coupling during recall. Learning and Memory, 2022, 29, 1-6.	1.3	3
140	Avoidance memory requires CaMKII activity to persist after recall. Molecular Brain, 2021, 14, 167.	2.6	2
141	Participation of CaMKII in Neuronal Plasticity and Memory Formation. ChemInform, 2003, 34, no.	0.0	0
142	Long-term memory persistence. Future Neurology, 2010, 5, 911-917.	0.5	0
143	Multiple Stages of Memory Formation and Persistence. , 2017, , 237-246.		0
144	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. , 2012, , 205-213.		0

#	Article	IF	CITATIONS
145	Memory Persistence. , 2012, , 2172-2173.		0
146	Persistence of Long-Term Memory Storage: New Insights into its Molecular Signatures in the Hippocampus and Related Structures. , 2013, , 239-247.		0
147	Aspectos neuropsicológicos da Epilepsia do Lobo Temporal na infância. Revista Neurociencias, 2009, 17, 46-50.	0.0	0