
Kirsten Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2269486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hostâ€free transcriptome for haustoriogenesis in <i>Cuscuta campestris</i> : Signature gene expression identifies markers of successive development stages. Physiologia Plantarum, 2022, 174, e13628.	5.2	11
2	The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants. Frontiers in Plant Science, 2021, 12, 641924.	3.6	7
3	Innovating carbon-capture biotechnologies through ecosystem-inspired solutions. One Earth, 2021, 4, 49-59.	6.8	21
4	Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmFC genes. BMC Genomics, 2021, 22, 816.	2.8	11
5	Selective mineral transport barriers at <i>Cuscuta</i> â€host infection sites. Physiologia Plantarum, 2020, 168, 934-947.	5.2	12
6	Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytologist, 2020, 225, 1461-1469.	7.3	56
7	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	12.8	36
8	A highly efficient protocol for transforming <i>Cuscuta reflexa</i> based on artificially induced infection sites. Plant Direct, 2020, 4, e00254.	1.9	9
9	The Chloroplast Ribonucleoprotein CP33B Quantitatively Binds the psbA mRNA. Plants, 2020, 9, 367.	3.5	2
10	Screening for Cellulolytic Plant Enzymes Using Colorimetric and Fluorescence Methods. Methods in Molecular Biology, 2020, 2149, 193-201.	0.9	0
11	A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. Plant Methods, 2019, 15, 88.	4.3	9
12	MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. Molecular Plant, 2019, 12, 879-892.	8.3	353
13	Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (<scp><i>Cuscuta reflexa</i></scp>). Physiologia Plantarum, 2018, 162, 205-218.	5.2	22
14	The parasitic plant haustorium: a trojan horse releasing microRNAs that take control of the defense responses of the host. Non-coding RNA Investigation, 2018, 2, 44-44.	0.6	0
15	From plant cell wall metabolism and plasticity to cell wall biotechnology. Physiologia Plantarum, 2018, 164, 2-4.	5.2	1
16	Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nature Communications, 2018, 9, 2515.	12.8	141
17	Cytokinin Response Factor 5 has transcriptional activity governed by its C-terminal domain. Plant Signaling and Behavior, 2017, 12, e1276684.	2.4	22
18	The <scp>RNA</scp> recognition motif protein <scp>CP</scp> 33A is a global ligand of chloroplast <scp>mRNA</scp> s and is essential for plastid biogenesis and plant development. Plant Journal, 2017, 89, 472-485.	5.7	22

KIRSTEN KRAUSE

#	Article	IF	CITATIONS
19	Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa. PLoS ONE, 2017, 12, e0176754.	2.5	23
20	Two sides of the same coin: Xyloglucan endotransglucosylases/hydrolases in host infection by the parasitic plant <i>Cuscuta</i> . Plant Signaling and Behavior, 2016, 11, e1145336.	2.4	8
21	Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm <i>Cuscuta</i> . Journal of Experimental Botany, 2016, 67, 695-708.	4.8	46
22	Cell wall composition profiling of parasitic giant dodder (<i><scp>C</scp>uscuta reflexa</i>) and its hosts: <i>a priori</i> differences and induced changes. New Phytologist, 2015, 207, 805-816.	7.3	52
23	Extreme Features of the Galdieria sulphuraria Organellar Genomes: A Consequence of Polyextremophily?. Genome Biology and Evolution, 2015, 7, 367-380.	2.5	31
24	Grand-scale theft: Kleptoplasty in parasitic plants?. Trends in Plant Science, 2015, 20, 196-198.	8.8	11
25	Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale. Plant Signaling and Behavior, 2015, 10, e1086858.	2.4	8
26	Cellulase Activity Screening Using Pure Carboxymethylcellulose: Application to Soluble Cellulolytic Samples and to Plant Tissue Prints. International Journal of Molecular Sciences, 2014, 15, 830-838.	4.1	62
27	Reduced Genomes from Parasitic Plant Plastids: Templates for Minimal Plastomes?. Progress in Botany Fortschritte Der Botanik, 2014, , 97-115.	0.3	2
28	New insights into plastid nucleoid structure and functionality. Planta, 2013, 237, 653-664.	3.2	49
29	Green Targeting Predictor and Ambiguous Targeting Predictor 2: the pitfalls of plant protein targeting prediction and of transient protein expression in heterologous systems. New Phytologist, 2013, 200, 1022-1033.	7.3	29
30	Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid. Frontiers in Plant Science, 2012, 3, 283.	3.6	28
31	Dual Targeting and Retrograde Translocation: Regulators of Plant Nuclear Gene Expression Can Be Sequestered by Plastids. International Journal of Molecular Sciences, 2012, 13, 11085-11101.	4.1	37
32	Plastid Genomes of Parasitic Plants: A Trail of Reductions and Losses. , 2012, , 79-103.		16
33	Piecing together the puzzle of parasitic plant plastome evolution. Planta, 2011, 234, 647-656.	3.2	42
34	Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy, 2011, 7, 993-1010.	9.1	283
35	The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants. New Biotechnology, 2010, 27, 256-266.	4.4	12
36	Dataâ€directed topâ€down Fourierâ€ŧransform mass spectrometry of a large integral membrane protein complex: Photosystem II from <i>Galdieria sulphuraria</i> . Proteomics, 2010, 10, 3644-3656.	2.2	38

KIRSTEN KRAUSE

#	Article	IF	CITATIONS
37	Nuclear regulators with a second home in organelles. Trends in Plant Science, 2009, 14, 194-199.	8.8	74
38	Genetic analysis of the Photosystem I subunits from the red alga, Galdieria sulphuraria. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 46-59.	1.0	47
39	From chloroplasts to "cryptic―plastids: evolution of plastid genomes in parasitic plants. Current Genetics, 2008, 54, 111-121.	1.7	107
40	Herbizide – neue Wirkstoffe gegen die Malaria? Ein Zellorganell pflanzlichen Ursprungs macht Plasmodium verwundbar. Biologie in Unserer Zeit, 2007, 37, 228-234.	0.2	0
41	Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biology, 2007, 7, 45.	3.6	185
42	Analysis of gene expression in amyloplasts of potato tubers. Planta, 2007, 227, 91-99.	3.2	12
43	Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Molecular Genetics and Genomics, 2007, 277, 631-646.	2.1	72
44	Tocochromanol content and composition in different species of the parasitic flowering plant genus Cuscuta. Journal of Plant Physiology, 2005, 162, 777-781.	3.5	20
45	DNA-binding proteins of the Whirly family inArabidopsis thalianaare targeted to the organelles. FEBS Letters, 2005, 579, 3707-3712.	2.8	104
46	The Mitochondrial Message-specific mRNA Protectors Cbp1 and Pet309 Are Associated in a High-Molecular Weight Complex. Molecular Biology of the Cell, 2004, 15, 2674-2683.	2.1	50
47	Analysis of transcription asymmetries along the tRNAE-COB operon: evidence for transcription attenuation and rapid RNA degradation between coding sequences. Nucleic Acids Research, 2004, 32, 6276-6283.	14.5	16
48	The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta, 2004, 219, 541-6.	3.2	31
49	Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta, 2003, 216, 815-823.	3.2	44
50	Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition. Planta, 2003, 218, 135-142.	3.2	21
51	Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant Journal, 2002, 31, 171-188.	5.7	178
52	Molecular and functional properties of highly purified transcriptionally active chromosomes from spinach chloroplasts. Physiologia Plantarum, 2000, 109, 188-195.	5.2	43
53	Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Molecular Genetics and Genomics, 2000, 263, 1022-1030.	2.4	92
54	Responses of the transcriptional apparatus of barley chloroplasts to a prolonged dark period and to subsequent reillumination. Physiologia Plantarum, 1998, 104, 143-152.	5.2	26