Robert B O'hara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2268585/publications.pdf

Version: 2024-02-01

214 papers 72,434 citations

14614 66 h-index 202 g-index

227 all docs

227 docs citations

times ranked

227

86221 citing authors

#	Article	lF	CITATIONS
1	Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67, 301-320.	1.1	12,982
2	Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 2010, 33, .	1.8	10,210
3	Least angle regression. Annals of Statistics, 2004, 32, 407.	1.4	6,530
4	An Introduction to Statistical Learning. Springer Texts in Statistics, 2013, , .	3.8	6,001
5	A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17, 43-57.	1.9	4,420
6	Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2008, 9, 432-441.	0.9	3,943
7	Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 2006, 15, 265-286.	0.9	2,067
8	Generalized Additive Models. Statistical Science, 1986, 1, 297.	1.6	2,066
9	Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 2002, 157, 89-100.	1.2	1,689
10	REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. American Journal of Human Genetics, 2016, 99, 877-885.	2.6	1,555
11	Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 2011, 39, 1-13.	1.8	1,453
12	Multi-class AdaBoost. Statistics and Its Interface, 2009, 2, 349-360.	0.2	1,170
13	Do not logâ€transform count data. Methods in Ecology and Evolution, 2010, 1, 118-122.	2.2	942
14	A Sparse-Group Lasso. Journal of Computational and Graphical Statistics, 2013, 22, 231-245.	0.9	913
15	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	6.0	783
16	So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology and Evolution, 2015, 30, 766-779.	4.2	607
17	Standards for distribution models in biodiversity assessments. Science Advances, 2019, 5, eaat4858.	4.7	605
18	Prediction by Supervised Principal Components. Journal of the American Statistical Association, 2006, 101, 119-137.	1.8	568

#	Article	IF	Citations
19	A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 2009, 4, .	1.6	519
20	Understanding coâ€occurrence by modelling species simultaneously with a Joint Species Distribution Model (<scp>JSDM</scp>). Methods in Ecology and Evolution, 2014, 5, 397-406.	2,2	477
21	Sparse Discriminant Analysis. Technometrics, 2011, 53, 406-413.	1.3	433
22	Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. Journal of Personalized Medicine, 2017, 7, 3.	1.1	420
23	Making better biogeographical predictions of species' distributions. Journal of Applied Ecology, 2006, 43, 386-392.	1.9	415
24	Comparative studies of quantitative trait and neutral marker divergence: a metaâ€analysis. Journal of Evolutionary Biology, 2008, 21, 1-17.	0.8	390
25	QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nature Reviews Genetics, 2013, 14, 179-190.	7.7	362
26	Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 2012, 39, 2163-2178.	1.4	340
27	Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods in Ecology and Evolution, 2015, 6, 424-438.	2.2	333
28	Point process models for presenceâ€only analysis. Methods in Ecology and Evolution, 2015, 6, 366-379.	2.2	319
29	<i>SparseNet</i> : Coordinate Descent With Nonconvex Penalties. Journal of the American Statistical Association, 2011, 106, 1125-1138.	1.8	303
30	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	2.4	290
31	The evolutionary ecology of dispersal. Trends in Ecology and Evolution, 1999, 14, 88-90.	4.2	272
32	Kernel Logistic Regression and the Import Vector Machine. Journal of Computational and Graphical Statistics, 2005, 14, 185-205.	0.9	272
33	Social Learning of Migratory Performance. Science, 2013, 341, 999-1002.	6.0	270
34	How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 2012, 39, 2146-2162.	1.4	249
35	Species decline—but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia, 2003, 135, 138-148.	0.9	237
36	Causal Interpretations of Black-Box Models. Journal of Business and Economic Statistics, 2021, 39, 272-281.	1.8	217

#	Article	IF	CITATIONS
37	Host Genotype Shapes the Foliar Fungal Microbiome of Balsam Poplar (Populus balsamifera). PLoS ONE, 2013, 8, e53987.	1.1	213
38	Data Integration for Large-Scale Models of Species Distributions. Trends in Ecology and Evolution, 2020, 35, 56-67.	4.2	205
39	Presenceâ€Only Data and the EM Algorithm. Biometrics, 2009, 65, 554-563.	0.8	201
40	Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 2013, 7, 1917-1939.	0.5	189
41	The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 2012, 6, 2125-2149.	0.4	179
42	Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Molecular Ecology, 2003, 12, 1963-1978.	2.0	177
43	Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 2008, 1, 91-102.	2.8	171
44	Species richness estimators: how many species can dance on the head of a pin?. Journal of Animal Ecology, 2005, 74, 375-386.	1.3	160
45	Learning Interactions via Hierarchical Group-Lasso Regularization. Journal of Computational and Graphical Statistics, 2015, 24, 627-654.	0.9	160
46	Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews, 2016, 40, 686-700.	3.9	159
47	Inference from presenceâ€only data; the ongoing controversy. Ecography, 2013, 36, 864-867.	2.1	158
48	Bias and Precision in QST Estimates: Problems and Some Solutions. Genetics, 2005, 171, 1331-1339.	1.2	154
49	Connecting dynamic vegetation models to data – an inverse perspective. Journal of Biogeography, 2012, 39, 2240-2252.	1.4	144
50	What drives community dynamics?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2923-2929.	1.2	135
51	Clinically Relevant Molecular Subtypes in Leiomyosarcoma. Clinical Cancer Research, 2015, 21, 3501-3511.	3.2	129
52	Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research, 2014, 15, 1625-1651.	62.4	126
53	Relocation, highâ€latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology, 2015, 24, 235-248.	2.0	125
54	Wearable sensors enable personalized predictions of clinical laboratory measurements. Nature Medicine, 2021, 27, 1105-1112.	15.2	121

#	Article	IF	CITATIONS
55	Risk Factors for the Presence of Chikungunya and Dengue Vectors (Aedes aegypti and Aedes) Tj ETQq1 1 0.78431	4 rgBT /C	verlock 10 101
56	Nepal. PLoS Neglected Tropical Diseases, 2015, 9, e0003545. Decreasing human body temperature in the United States since the Industrial Revolution. ELife, 2020, 9,	2.8	98
57	RANKING METAPOPULATION EXTINCTION RISK: FROM PATTERNS IN DATA TO CONSERVATION MANAGEMENT DECISIONS. , 2003, 13, 990-998.		90
58	Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares. Journal of Machine Learning Research, 2015, 16, 3367-3402.	62.4	90
59	Female-Biased Expression on the X Chromosome as a Key Step in Sex Chromosome Evolution in Threespine Sticklebacks. Molecular Biology and Evolution, 2010, 27, 1495-1503.	3.5	86
60	Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nature Communications, 2016, 7, 12793.	5.8	83
61	Cross-realm assessment of climate change impacts on species' abundance trends. Nature Ecology and Evolution, 2017, 1, 67.	3.4	83
62	Some methods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine, 2018, 37, 1767-1787.	0.8	83
63	Surprises in high-dimensional ridgeless least squares interpolation. Annals of Statistics, 2022, 50, .	1.4	82
64	A multispecies perspective on ecological impacts of climatic forcing. Journal of Animal Ecology, 2011, 80, 101-107.	1.3	81
65	Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Science of the Total Environment, 2018, 621, 588-599.	3.9	80
66	ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system. Nucleic Acids Research, 2016, 44, e80-e80.	6.5	76
67	Climateâ€Driven Spatial Dynamics of Plague among Prairie Dog Colonies. American Naturalist, 2008, 171, 238-248.	1.0	75
68	<scp>CATS</scp> regression – a modelâ€based approach to studying traitâ€based community assembly. Methods in Ecology and Evolution, 2015, 6, 389-398.	2.2	75
69	A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank. PLoS Genetics, 2020, 16, e1009141.	1.5	75
70	Does double-blind review benefit female authors?. Trends in Ecology and Evolution, 2008, 23, 351-353.	4.2	72
71	Confounder adjustment in multiple hypothesis testing. Annals of Statistics, 2017, 45, 1863-1894.	1.4	71
72	BAYESIAN ANALYSIS OF METAPOPULATION DATA. Ecology, 2002, 83, 2408-2415.	1.5	70

#	Article	IF	CITATIONS
73	Testing abundance-range size relationships in European carabid beetles (Coleoptera, Carabidae). Ecography, 2003, 26, 553-566.	2.1	68
74	A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.	1.4	68
75	Bayesian mapping of genotype $\tilde{A}-$ expression interactions in quantitative and qualitative traits. Heredity, 2006, 97, 4-18.	1.2	66
76	Effects of landscape complexity on farmland birds in the Baltic States. Agriculture, Ecosystems and Environment, 2007, 118, 297-306.	2.5	66
77	State-dependent male mating tactics in the grey seal: the importance of body size. Behavioral Ecology, 2005, 16, 541-549.	1.0	64
78	How to Make Models Add Up — A Primer on GLMMs. Annales Zoologici Fennici, 2009, 46, 124-137.	0.2	64
79	Comparing the effects of genetic drift and fluctuating selection on genotype frequency changes in the scarlet tiger moth. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 211-217.	1.2	63
80	New multicategory boosting algorithms based on multicategory Fisher-consistent losses. Annals of Applied Statistics, 2008, 2, 1290-1306.	0.5	61
81	Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quaternary Science Reviews, 2017, 169, 378-390.	1.4	61
82	Seeing the trees for the leaves - oaks as mosaics for a host-specific moth. Oikos, 2006, 113, 106-120.	1.2	60
83	Local case-control sampling: Efficient subsampling in imbalanced data sets. Annals of Statistics, 2014, 42, 1693-1724.	1.4	60
84	Genetic and maternal effect influences on viability of common frog tadpoles under different environmental conditions. Heredity, 2003, 91, 117-124.	1.2	57
85	Quantifying rangeâ€wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. Methods in Ecology and Evolution, 2014, 5, 751-760.	2,2	56
86	Is more data always better? A simulation study of benefits and limitations of integrated distribution models. Ecography, 2020, 43, 1413-1422.	2.1	56
87	Bayesian model selection: The steepest mountain to climb. Ecological Modelling, 2014, 283, 62-69.	1.2	54
88	Retention-tree groups in clear-cuts: Do they constitute †life-boats' for spiders and carabids?. Forest Ecology and Management, 2006, 230, 119-135.	1.4	53
89	Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal. Malaria Journal, 2014, 13, 457.	0.8	52
90	Bayesian approaches in evolutionary quantitative genetics. Journal of Evolutionary Biology, 2008, 21, 949-957.	0.8	51

#	Article	IF	CITATIONS
91	A clinico-genomic analysis of soft tissue sarcoma patients reveals CDKN2A deletion as a biomarker for poor prognosis. Clinical Sarcoma Research, 2019, 9, 12.	2.3	51
92	Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11955-11960.	3.3	50
93	Dealing with Varying Detection Probability, Unequal Sample Sizes and Clumped Distributions in Count Data. PLoS ONE, 2012, 7, e40923.	1.1	49
94	Consequences of the spatial configuration of resources for the distribution and dynamics of the endangered Parnassius apollo butterfly. Biological Conservation, 2006, 130, 183-192.	1.9	47
95	Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology, 2011, 92, 2310-2315.	1.5	47
96	The importance of parasite geography and spillover effects for global patterns of host–parasite associations in two invasive species. Diversity and Distributions, 2015, 21, 477-486.	1.9	46
97	Local Adaptation and Genetics of Acid-Stress Tolerance in the Moor Frog, Rana arvalis. Conservation Genetics, 2004, 5, 513-527.	0.8	44
98	Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192873.	1.2	44
99	Efficient quadratic regularization for expression arrays. Biostatistics, 2004, 5, 329-40.	0.9	44
100	A niche for biology in species distribution models. Journal of Biogeography, 2012, 39, 2091-2095.	1.4	43
101	Longâ€term population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos, 2015, 124, 1151-1159.	1.2	41
102	Species distribution models are inappropriate for COVID-19. Nature Ecology and Evolution, 2020, 4, 770-771.	3.4	41
103	AIR-MEDIATED POLLEN FLOW FROM GENETICALLY MODIFIED TO CONVENTIONAL CROPS., 2007, 17, 431-440.		40
104	Detecting compensatory dynamics in competitive communities under environmental forcing. Oikos, 2008, 117, 1907-1911.	1.2	40
105	Assessment of UV Biological Spectral Weighting Functions for Phenolic Metabolites and Growth Responses in Silver Birch Seedlings. Photochemistry and Photobiology, 2009, 85, 1346-1355.	1.3	39
106	The anarchist's guide to ecological theory. Or, we don't need no stinkin' laws. Oikos, 2005, 110, 390-393.	1.2	38
107	Population structure, mating system, and sex-determining allele diversity of the parasitoid wasp Habrobracon hebetor. Heredity, 2003, 91, 373-381.	1.2	37
108	Relatedness and spatial proximity as determinants of host–parasite interactions in the brood parasitic Barrow's goldeneye (<i>Bucephala islandica</i>). Molecular Ecology, 2009, 18, 2713-2721.	2.0	37

#	Article	IF	CITATIONS
109	Sexual patterns of prebreeding energy reserves in the common frog <i>Rana temporaria</i> along a latitudinal gradient. Ecography, 2009, 32, 831-839.	2.1	37
110	Ridge Regularization: An Essential Concept in Data Science. Technometrics, 2020, 62, 426-433.	1.3	37
111	Shifts from native to invasive small mammals across gradients from tropical forest to urban habitat in Borneo. Biodiversity and Conservation, 2014, 23, 2289-2303.	1.2	36
112	Uncovering the drivers of hostâ€essociated microbiota with joint species distribution modelling. Molecular Ecology, 2018, 27, 2714-2724.	2.0	36
113	Facial morphology predicts male fitness and rank but not survival in Second World War Finnish soldiers. Biology Letters, 2013, 9, 20130049.	1.0	35
114	Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations. Conservation Genetics, 2001, 2, 325-335.	0.8	34
115	The relative importance of lunar phase and environmental conditions on striped marlin (Tetrapturus) Tj ETQq $1\ 1$	0.784314 0.9	rgBT /Overlo
116	Parameter and uncertainty estimation for processâ€oriented population and distribution models: data, statistics and the niche. Journal of Biogeography, 2012, 39, 2225-2239.	1.4	32
117	Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial î±-helical membrane anchors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8172-E8180.	3.3	31
118	Animal-Borne Acoustic Transceivers Reveal Patterns of at-Sea Associations in an Upper-Trophic Level Predator. PLoS ONE, 2012, 7, e48962.	1.1	31
119	Effects of habitat edges and trampling on the distribution of ground beetles (Coleoptera, Carabidae) in urban forests. Journal of Insect Conservation, 2012, 16, 883-897.	0.8	30
120	The role of phenotypic plasticity in responses of hunted thinhorn sheep ram horn growth to changing climate conditions. Journal of Evolutionary Biology, 2010, 23, 783-790.	0.8	29
121	Integrating the niche and neutral perspectives on community structure and dynamics. Oecologia, 2011, 166, 241-251.	0.9	28
122	Species interactions: estimating perâ€individual interaction strength and covariates before simplifying data into perâ€species ecological networks. Methods in Ecology and Evolution, 2013, 4, 1-8.	2.2	28
123	Environmental effects and individual body condition drive seasonal fecundity of rabbits: identifying acute and lagged processes. Oecologia, 2016, 181, 853-864.	0.9	28
124	Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld's deer. Scientific Reports, 2019, 9, 7766.	1.6	28
125	Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod. ICES Journal of Marine Science, 2010, 67, 833-855.	1.2	27
126	Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau). Climate of the Past, 2014, 10, 1401-1420.	1.3	27

#	Article	IF	CITATIONS
127	Habitat-Mediated Facilitation and Counteracting Ecosystem Engineering Interactively Influence Ecosystem Responses to Disturbance. PLoS ONE, 2011, 6, e23229.	1.1	27
128	Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. Journal of the Royal Society Interface, 2015, 12, 20141184.	1.5	26
129	The implications of stress on male mating behavior and success in a sexually dimorphic polygynous mammal, the grey seal. Hormones and Behavior, 2008, 53, 241-248.	1.0	25
130	Quantifying the effects of trampling and habitat edges on forest understory vegetation $\hat{a}\in$ A field experiment. Journal of Environmental Management, 2010, 91, 1811-1820.	3.8	25
131	Inferring host specificity and network formation through agent-based models: tick–mammal interactions in Borneo. Oecologia, 2013, 172, 307-316.	0.9	25
132	Effects of fragmentation and trampling on carabid beetle assemblages in urban woodlands in Helsinki, Finland. Urban Ecosystems, 2006, 9, 13-26.	1.1	24
133	The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1120-1125.	2.2	24
134	Extending Joint Models in Community Ecology: A Response to Beissinger et al Trends in Ecology and Evolution, 2016, 31, 737-738.	4.2	24
135	Disentangling the effects of multiple environmental drivers on population changes within communities. Journal of Animal Ecology, 2018, 87, 1034-1045.	1.3	24
136	Heritability of Asymmetry and Lateral Plate Number in the Threespine Stickleback. PLoS ONE, 2012, 7, e39843.	1.1	23
137	Repeatability and reproductive consequences of boldness in female gray seals. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	22
138	Fast Lasso method for large-scale and ultrahigh-dimensional Cox model with applications to UK Biobank. Biostatistics, 2022, 23, 522-540.	0.9	22
139	Species abundance dynamics under neutral assumptions: a Bayesian approach to the controversy. Functional Ecology, 2008, 22, 340-347.	1.7	21
140	Numerical response of small mustelids to vole abundance: delayed or not?. Oikos, 2013, 122, 1112-1120.	1.2	21
141	Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway. Gynecologic Oncology, 2018, 149, 388-393.	0.6	21
142	Visual disease and PCR assessment of stem base diseases in winter wheat. Plant Pathology, 1999, 48, 742-748.	1.2	20
143	A probabilistic approach to exposure risk assessment. Stochastic Environmental Research and Risk Assessment, 2008, 22, 441-449.	1.9	20
144	Lifting A Veil On Diversity: A Bayesian Approach To Fitting Relative-Abundance Models., 2006, 16, 202-212.		19

#	Article	IF	Citations
145	The role of model selection in describing stochastic ecological processes. Oikos, 2007, 116, 966-974.	1.2	19
146	The role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries, 2008, 9, 201-207.	2.7	19
147	Using streamflow observations to estimate the impact of hydrological regimes and anthropogenic water use on European stream macroinvertebrate occurrences. Ecohydrology, 2017, 10, e1895.	1.1	19
148	The Error Coding Method and PICTs. Journal of Computational and Graphical Statistics, 1998, 7, 377-387.	0.9	18
149	Quantifying Habitat Requirements of Treeâ€Living Species in Fragmented Boreal Forests with Bayesian Methods. Conservation Biology, 2009, 23, 1127-1137.	2.4	18
150	Immigration of the barley mildew pathogen into field plots of barley. Plant Pathology, 1996, 45, 1071-1076.	1.2	17
151	Negative results are published. Nature, 2011, 471, 448-449.	13.7	17
152	Cross-taxa generalities in the relationship between population abundance and ambient temperatures. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170870.	1.2	17
153	Seasonal fluctuations in leaf phenolic composition under UV manipulations reflect contrasting strategies of alder and birch trees. Physiologia Plantarum, 2010, 140, no-no.	2.6	16
154	Modelling seasonal dynamics, population stability, and pest control in Aedes japonicus japonicus (Diptera: Culicidae). Parasites and Vectors, 2019, 12, 142.	1.0	16
155	Population fluctuations affect inference in ecological networks of multiâ€species interactions. Oikos, 2014, 123, 589-598.	1.2	15
156	Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data. Biometrics, 2009, 65, 275-281.	0.8	14
157	Lunar periodicity and the timing of river entry in Atlantic salmon <i>Salmo salar</i> . Journal of Fish Biology, 2009, 74, 2401-2408.	0.7	14
158	Sparse EEG/MEG source estimation via a group lasso. PLoS ONE, 2017, 12, e0176835.	1.1	14
159	Geographical and ecological distributions of frog hemiclones suggest occurrence of both  General-Purpose Genotype' and  Frozen Niche Variation' clones. Journal of Zoological Systematics a Evolutionary Research, 2008, 46, 162-168.	n d. 6	13
160	Ectoparasite infestation patterns of domestic dogs in suburban and rural areas in Borneo. Parasitology Research, 2012, 111, 909-919.	0.6	13
161	<i>Plateau</i> : a new method for ecologically plausible climate envelopes for species distribution modelling. Methods in Ecology and Evolution, 2016, 7, 1489-1502.	2.2	13
162	Variable Strength of Forest Stand Attributes and Weather Conditions on the Questing Activity of Ixodes ricinus Ticks over Years in Managed Forests. PLoS ONE, 2013, 8, e55365.	1.1	13

#	Article	IF	CITATIONS
163	Spatial aggregation of pathotypes of barley powdery mildew. Plant Pathology, 1997, 46, 969-977.	1.2	12
164	Detecting Clinically Meaningful Biomarkers with Repeated Measurements: An Illustration with Electronic Health Records. Biometrics, 2015, 71, 478-486.	0.8	12
165	Frequency- and density-dependent selection in wheat powdery mildew. Heredity, 1996, 77, 439-447.	1.2	11
166	Transmitting speciesâ€interaction data from animalâ€borne transceivers through Service Argos using Bluetooth communication. Methods in Ecology and Evolution, 2014, 5, 864-871.	2.2	11
167	Evaluating temporal variation in Citizen Science Data against temporal variation in the environment. Ecography, 2014, 37, 293-300.	2.1	11
168	Customized training with an application to mass spectrometric imaging of cancer tissue. Annals of Applied Statistics, 2015, 9, 1709-1725.	0.5	11
169	Selection of Effects in Cox Frailty Models by Regularization Methods. Biometrics, 2017, 73, 846-856.	0.8	11
170	Parasites as Biological Tags for Stock Discrimination of Beaked Redfish (Sebastes mentella): Parasite Infra-Communities vs. Limited Resolution of Cytochrome Markers. PLoS ONE, 2016, 11, e0153964.	1.1	11
171	Probability of Detecting Marine Predator-Prey and Species Interactions Using Novel Hybrid Acoustic Transmitter-Receiver Tags. PLoS ONE, 2014, 9, e98117.	1.1	10
172	The effect of fungicide dose on the composition of laboratory populations of barley powdery mildew. Plant Pathology, 2000, 49, 558-566.	1.2	9
173	Note on "Comparison of Model Selection for Regression―by Vladimir Cherkassky and Yunqian Ma. Neural Computation, 2003, 15, 1477-1480.	1.3	9
174	Synergistic drug combinations from electronic health records and gene expression. Journal of the American Medical Informatics Association: JAMIA, 2017, 24, 565-576.	2.2	9
175	Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits. Journal of Animal Ecology, 2018, 87, 1418-1428.	1.3	9
176	Modelâ€based ordination for species with unequal niche widths. Methods in Ecology and Evolution, 2021, 12, 1288-1300.	2.2	9
177	Integrated modeling of waterfowl distribution in western Canada using aerial survey and citizen science (eBird) data. Ecosphere, 2021, 12, e03790.	1.0	9
178	Movement of barley powdery mildew within field plots. Plant Pathology, 1998, 47, 394-400.	1.2	8
179	Targeting season and age for optimizing control of invasive rabbits. Journal of Wildlife Management, 2016, 80, 990-999.	0.7	8
180	Association of cardiovascular events and lipoprotein particle size: Development of a risk score based on functional data analysis. PLoS ONE, 2019, 14, e0213172.	1.1	7

#	Article	IF	Citations
181	Donâ∈™t gamble the COVID-19 response on ecological hypotheses. Nature Ecology and Evolution, 2020, 4, 1155-1155.	3.4	7
182	The structure and strength of environmental variation modulate covariance patterns. A reply to Houlahan et al. 2008. Oikos, 2008, 117, 1914-1914.	1.2	5
183	Double-blind review: let diversity reign. Nature, 2008, 452, 28-28.	13.7	5
184	On the setting of environmental noise and the performance of population dynamical models. BMC Ecology, 2010, 10, 7.	3.0	5
185	A novel approach to quantifying the spatiotemporal behavior of instrumented grey seals used to sample the environment. Movement Ecology, 2015, 3, 20.	1.3	5
186	Effect of long-term antibiotic use on weight in adolescents with acne. Journal of Antimicrobial Chemotherapy, 2016, 71, 1098-1105.	1.3	5
187	Integrating dispersal along freshwater ecosystems into species distribution models. Diversity and Distributions, 2020, 26, 1598-1611.	1.9	5
188	Canonical correlation analysis in high dimensions with structured regularization. Statistical Modelling, 2023, 23, 203-227.	0.5	5
189	Traitâ€dependent occupancy dynamics of birds in temperate forest landscapes: fineâ€scale observations in a hierarchical multiâ€species framework. Animal Conservation, 2012, 15, 626-637.	1.5	4
190	Comment on "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rateâ€, author Coro. Ecological Modelling, 2020, 436, 109288.	1.2	4
191	Assessment of heterogeneous treatment effect estimation accuracy via matching. Statistics in Medicine, 2021, 40, 3990-4013.	0.8	4
192	Probabilistic Models for Continuous Ontogenetic Transition Processes. PLoS ONE, 2008, 3, e3677.	1.1	4
193	Why negatives should be viewed as positives. Nature, 2006, 439, 782-782.	13.7	3
194	Spatio-temporal dynamics in waterbirds during the non-breeding season: Effects of local movements, migration and weather are monthly, not yearly. Basic and Applied Ecology, 2013, 14, 523-531.	1.2	3
195	Backfitting for large scale crossed random effects regressions. Annals of Statistics, 2022, 50, .	1.4	3
196	Statistical Measures for the Computer-Aided Diagnosis of Mammographic Masses. Journal of Computational and Graphical Statistics, 1999, 8, 531-543.	0.9	2
197	Discussion of "Prediction, Estimation, and Attribution―by Bradley Efron. International Statistical Review, 2020, 88, S73.	1.1	2
198	Quantitative genetics: Wholesale analysis of genes, traits and microarrays. Heredity, 2006, 97, 253-253.	1.2	1

#	Article	IF	CITATIONS
199	Human expression patterns: Genetic differences between populations. Heredity, 2007, 98, 245-246.	1.2	1
200	Selective harvesting with equations: comment on â€~Should hunting mortality mimic the patterns of natural mortality?'. Biology Letters, 2009, 5, 211-212.	1.0	1
201	Ten years of <i>Methods in Ecology and Evolution</i> . Methods in Ecology and Evolution, 2020, 11, 4-5.	2.2	1
202	European grants: a different view puts rich countries ahead. Nature, 2008, 455, 285-285.	13.7	0
203	Preface to Methods in Ecological Research. Annales Zoologici Fennici, 2009, 46, 81-81.	0.2	O
204	Discussion of "Prediction, Estimation, and Attribution―by Bradley Efron. Journal of the American Statistical Association, 2020, 115, 665-666.	1.8	0
205	Perioperative analgesic administration during the 2018 parenteral opioid shortage in the United States – A retrospective analysis. Journal of Clinical Anesthesia, 2020, 66, 109892.	0.7	0
206	An attempt to test whether dogs (Canis familiaris) show increased preference towards humans who match their behaviour. Journal of Ethology, 2020, 38, 223-232.	0.4	0
207	Saturating Splines and Feature Selection. Journal of Machine Learning Research, 2018, 18, .	62.4	0
208	Title is missing!. , 2020, 16, e1009141.		0
209	Title is missing!. , 2020, 16, e1009141.		0
210	Title is missing!. , 2020, 16, e1009141.		0
211	Title is missing!. , 2020, 16, e1009141.		0
212	Title is missing!. , 2020, 16, e1009141.		0
213	Title is missing!. , 2020, 16, e1009141.		0
214	An open future for <scp>MEE</scp> . Methods in Ecology and Evolution, 2022, 13, 1372-1373.	2.2	0