Xin Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2267732/publications.pdf

Version: 2024-02-01

216 papers 28,240 citations

4383 86 h-index 162 g-index

227 all docs

227 docs citations

times ranked

227

29625 citing authors

#	Article	IF	CITATIONS
1	The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut, 2022, 71, 1161-1175.	6.1	60
2	MicroRNA-15a/16-1 Prevents Hepatocellular Carcinoma by Disrupting the Communication Between Kupffer Cells and Regulatory T Cells. Gastroenterology, 2022, 162, 575-589.	0.6	38
3	Yap-Sox9 signaling determines hepatocyte plasticity and lineage-specific hepatocarcinogenesis. Journal of Hepatology, 2022, 76, 652-664.	1.8	42
4	A Phase II Study of Pembrolizumab in Combination with Capecitabine and Oxaliplatin with Molecular Profiling in Patients with Advanced Biliary Tract Carcinoma. Oncologist, 2022, 27, e273-e285.	1.9	22
5	Singleâ \in cell biology uncovers apoptotic cell death and its spatial organization as a potential modifier of tumor diversity in HCC. Hepatology, 2022, 76, 599-611.	3.6	8
6	Causes and functional intricacies of inter- and intratumor heterogeneity of primary liver cancers. Advances in Cancer Research, 2022, , .	1.9	0
7	Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. Journal of Biological Chemistry, 2022, 298, 101885.	1.6	13
8	The gut–liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends in Cancer, 2022, 8, 583-597.	3.8	22
9	Metformin treatment rescues CD8+ T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. Journal of Hepatology, 2022, 77, 748-760.	1.8	57
10	Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nature Cancer, 2022, 3, 386-401.	5.7	126
11	IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discovery, 2022, 12, 1960-1983.	7.7	14
12	Creatine riboside is a cancer cell–derived metabolite associated with arginine auxotrophy. Journal of Clinical Investigation, 2022, 132, .	3.9	4
13	Intratumoral γδT ell Infiltrates, Chemokine (C Motif) Ligand 4/Chemokine (C Motif) Ligand 5 Protein Expression and Survival in Patients With Hepatocellular Carcinoma. Hepatology, 2021, 73, 1045-1060.	3.6	44
14	MiRâ€125b Loss Activated HIF1α/pAKT Loop, Leading to Transarterial Chemoembolization Resistance in Hepatocellular Carcinoma. Hepatology, 2021, 73, 1381-1398.	3.6	45
15	Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. Journal of Hepatology, 2021, 74, 700-715.	1.8	60
16	CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 74, 1145-1154.	1.8	76
17	Gut Microbiome Directs Hepatocytes to Recruit MDSCs and Promote Cholangiocarcinoma. Cancer Discovery, 2021, 11, 1248-1267.	7.7	117
18	NMR characterization of rearranged staurosporine aglycone analogues from the marine sponge Damiria sp Magnetic Resonance in Chemistry, 2021, 59, 534-539.	1.1	12

#	Article	IF	Citations
19	Molecular Carcinogenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma. , 2021, , 123-141.		O
20	Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nature Communications, 2021, 12, 1455.	5.8	96
21	Toward a Liver Cell Atlas: Understanding Liver Biology in Health and Disease at Single-Cell Resolution. Seminars in Liver Disease, 2021, 41, 321-330.	1.8	7
22	Tumor metabolism and associated serum metabolites define prognostic subtypes of Asian hepatocellular carcinoma. Scientific Reports, 2021, 11, 12097.	1.6	8
23	Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Journal of Hepatology, 2021, 75, 1397-1408.	1.8	133
24	Integration of adeno-associated virus (AAV) into the genomes of most Thai and Mongolian liver cancer patients does not induce oncogenesis. BMC Genomics, 2021, 22, 814.	1.2	9
25	Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genomeâ€wide association study. JGH Open, 2021, 5, 1363-1372.	0.7	9
26	Cancer stem cells: advances in biology and clinical translationâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	1.8	8
27	Depletion of TRRAP Induces p53â€Independent Senescence in Liver Cancer by Downâ€Regulating Mitotic Genes. Hepatology, 2020, 71, 275-290.	3.6	43
28	Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 268.	3.5	16
29	The genomic landscape of Mongolian hepatocellular carcinoma. Nature Communications, 2020, 11, 4383.	5.8	55
30	Serum IL6 as a Prognostic Biomarker and IL6R as a Therapeutic Target in Biliary Tract Cancers. Clinical Cancer Research, 2020, 26, 5655-5667.	3.2	21
31	PKM2 inhibition may reverse therapeutic resistance to transarterial chemoembolization in hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 99.	3.5	51
32	A Viral Exposure Signature Defines Early Onset of Hepatocellular Carcinoma. Cell, 2020, 182, 317-328.e10.	13.5	53
33	<p>Impact of Next-Generation Sequencing on Outcomes in Hepatocellular Carcinoma: How Precise Are We Really?</p> . Journal of Hepatocellular Carcinoma, 2020, Volume 7, 33-37.	1.8	14
34	Understanding the Cause and Consequence of Tumor Heterogeneity. Trends in Cancer, 2020, 6, 267-271.	3.8	30
35	AGO2 Mediates <i>MYC</i> mRNA Stability in Hepatocellular Carcinoma. Molecular Cancer Research, 2020, 18, 612-622.	1.5	13
36	Molecular Alterations and Heterogeneity in Hepatocellular Carcinoma. Molecular and Translational Medicine, 2019, , 293-316.	0.4	4

#	Article	IF	CITATIONS
37	Urinary Metabolites Diagnostic and Prognostic of Intrahepatic Cholangiocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1704-1711.	1.1	15
38	Functional Genomic Complexity Defines Intratumor Heterogeneity and Tumor Aggressiveness in Liver Cancer. Scientific Reports, 2019, 9, 16930.	1.6	13
39	Recent Developments and Therapeutic Strategies against Hepatocellular Carcinoma. Cancer Research, 2019, 79, 4326-4330.	0.4	99
40	Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer. Cancer Cell, 2019, 36, 418-430.e6.	7.7	433
41	Proteomic heterogeneity reveals SOAT1 as a potential biomarker for hepatocellular carcinoma. Translational Gastroenterology and Hepatology, 2019, 4, 37-37.	1.5	7
42	The evolving landscape of precision medicine in primary liver cancer. Hepatic Oncology, 2019, 6, HEP12.	4.2	7
43	Roles of mitochondria in liver cancer stem cells. Differentiation, 2019, 107, 35-41.	1.0	19
44	Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell, 2019, 35, 932-947.e8.	7.7	182
45	NELFE-Dependent MYC Signature Identifies a Unique Cancer Subtype in Hepatocellular Carcinoma. Scientific Reports, 2019, 9, 3369.	1.6	9
46	Genome-Wide RNAi Screen Identifies PMPCB as a Therapeutic Vulnerability in EpCAM+ Hepatocellular Carcinoma. Cancer Research, 2019, 79, 2379-2391.	0.4	19
47	Gene signature predictive of hepatocellular carcinoma patient response to transarterial chemoembolization. International Journal of Biological Sciences, 2019, 15, 2654-2663.	2.6	18
48	Intrahepatic Cholangiocarcinoma: Continuing Challenges and Translational Advances. Hepatology, 2019, 69, 1803-1815.	3.6	195
49	cHCCâ \in CCA: Consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology, 2018, 68, 113-126.	3.6	244
50	Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology, 2018, 68, 949-963.	3.6	106
51	The significance of intertumor and intratumor heterogeneity in liver cancer. Experimental and Molecular Medicine, 2018, 50, e416-e416.	3.2	158
52	Singleâ€cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology, 2018, 68, 127-140.	3.6	231
53	Genomics Studies in Hepatocellular Carcinoma via Next-Generation Sequencing. Molecular Pathology Library, 2018, , 49-68.	0.1	1
54	Non-proteolytic ubiquitin modification of PPAR \hat{I}^3 by Smurf1 protects the liver from steatosis. PLoS Biology, 2018, 16, e3000091.	2.6	19

#	Article	IF	Citations
55	Integrated proteotranscriptomics of breast cancer reveals globally increased protein-mRNA concordance associated with subtypes and survival. Genome Medicine, 2018, 10, 94.	3.6	100
56	Necroptosis microenvironment directs lineage commitment in liver cancer. Nature, 2018, 562, 69-75.	13.7	283
57	Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018, 360, .	6.0	931
58	Molecular Carcinogenesis of HBV-Related HCC. , 2018, , 143-162.		1
59	Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Cell, 2017, 32, 57-70.e3.	7.7	324
60	Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology, 2017, 152, 1161-1173.e1.	0.6	97
61	The status of transarterial chemoembolization treatment in the era of precision oncology. Hepatic Oncology, 2017, 4, 55-63.	4.2	11
62	Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nature Communications, 2017, 8, 137.	5.8	44
63	Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma. Cancer Cell, 2017, 32, 101-114.e8.	7.7	121
64	Transcriptome integration analysis in hepatocellular carcinoma reveals discordant intronic miRNA-host gene pairs in expression. International Journal of Biological Sciences, 2017, 13, 1438-1449.	2.6	18
65	A race to uncover a panoramic view of primary liver cancer. Cancer Biology and Medicine, 2017, 14, 335.	1.4	7
66	Inhibition of wnt/ \hat{l}^2 -catenin Signaling in Hepatocellular Carcinoma by an Antipsychotic Drug Pimozide. International Journal of Biological Sciences, 2016, 12, 768-775.	2.6	50
67	Chromosome 8p tumor suppressor genes SH2D4A and SORBS3 cooperate to inhibit interleukinâ€6 signaling in hepatocellular carcinoma. Hepatology, 2016, 64, 828-842.	3.6	29
68	Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Scientific Reports, 2016, 6, 28633.	1.6	80
69	Three-dimensional Organotypic Culture Models of Human Hepatocellular Carcinoma. Scientific Reports, 2016, 6, 21174.	1.6	67
70	The importance of integrated genomics to uncover clinically relevant cancer driver genes. Molecular and Cellular Oncology, 2016, 3, e1019975.	0.3	0
71	Molecular Profiling of Human Hepatocellular Carcinoma. , 2016, , 93-112.		0
72	Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell, 2016, 30, 533-547.	7.7	397

#	Article	IF	Citations
73	GOLM1 Modulates EGFR/RTK Cell-Surface Recycling to Drive Hepatocellular Carcinoma Metastasis. Cancer Cell, 2016, 30, 444-458.	7.7	174
74	Novel Tumour Suppressor Genes Sorbs3 and Sh2d4a Repress Il-6 Signalling in Hepatocellular Carcinoma. Journal of Hepatology, 2016, 64, S158.	1.8	0
75	A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer. Scientific Reports, 2016, 6, 29662.	1.6	43
76	LTÎ ² R signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut, 2016, 65, 1765-1775.	6.1	17
77	The search for precision models clinically relevant to human liver cancer. Hepatic Oncology, 2015, 2, 315-319.	4.2	4
78	Identification of microRNAs specific for epithelial cell adhesion molecule–positive tumor cells in hepatocellular carcinoma. Hepatology, 2015, 62, 829-840.	3.6	51
79	Identification of a mitochondrial defect gene signature reveals NUPR1 as a key regulator of liver cancer progression. Hepatology, 2015, 62, 1174-1189.	3.6	50
80	Alternative splicing of the cell fate determinant Numb in hepatocellular carcinoma. Hepatology, 2015, 62, 1122-1131.	3.6	91
81	Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer. Oncotarget, 2015, 6, 6977-6988.	0.8	49
82	Integrative Genomic and Transcriptomic Characterization of Matched Primary and Metastatic Liver and Colorectal Carcinoma. International Journal of Biological Sciences, 2015, 11, 88-98.	2.6	37
83	Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM+ AFP+ hepatocellular carcinoma. Oncogene, 2015, 34, 5095-5104.	2.6	57
84	Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut, 2015, 64, 842-848.	6.1	155
85	Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology, 2015, 62, 481-495.	3.6	121
86	Translating bioinformatics in oncology: guilt-by-profiling analysis and identification of KIF18B and CDCA3 as novel driver genes in carcinogenesis. Bioinformatics, 2015, 31, 216-224.	1.8	63
87	Regulatory MiRâ€148aâ€ACVR1/BMP circuit defines a cancer stem cellâ€like aggressive subtype of hepatocellular carcinoma. Hepatology, 2015, 61, 574-584.	3.6	81
88	Abstract 360: Senescent hepatocytes secrete CCL2 to accelerate liver cancer growth via accumulation of immunosuppressive myeloid cells. Cancer Research, 2015, 75, 360-360.	0.4	1
89	Cell cycle-dependent phosphorylation of nucleophosmin and its potential regulation by peptidyl-prolyl cis/trans isomerase. Journal of Molecular Biochemistry, 2015, 4, 95-103.	0.1	7
90	Deciphering cancer heterogeneity: the biological space. Frontiers in Cell and Developmental Biology, 2014, 2, 12.	1.8	12

#	Article	IF	Citations
91	Genomic Predictors for Recurrence Patterns of Hepatocellular Carcinoma: Model Derivation and Validation. PLoS Medicine, 2014, 11, e1001770.	3.9	117
92	Identification of Drivers from Cancer Genome Diversity in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2014, 15, 11142-11160.	1.8	47
93	The origin of cancer stem cells. Journal of Hepatology, 2014, 60, 1304-1305.	1.8	12
94	Modulation of miR-29 expression by alpha-fetoprotein is linked to the hepatocellular carcinoma epigenome. Hepatology, 2014, 60, 872-883.	3.6	97
95	Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9905-9910.	3.3	108
96	Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology, 2014, 60, 1674-1685.	3.6	104
97	The biological and clinical challenge of liver cancer heterogeneity. Hepatic Oncology, 2014, 1, 349-353.	4.2	34
98	Metabolic Profiles are Principally Different between Cancers of the Liver, Pancreas and Breast. International Journal of Biological Sciences, 2014, 10, 966-972.	2.6	26
99	Highâ€throughput Screening for Identification of Inhibitors of Ep <scp>CAM</scp> â€Dependent Growth of Hepatocellular Carcinoma Cells. Chemical Biology and Drug Design, 2013, 82, 131-139.	1.5	15
100	Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology, 2013, 57, 1469-1483.	3.6	171
101	microRNA Regulation and Its Consequences in Cancer. Current Pathobiology Reports, 2013, 1, 71-79.	1.6	14
102	Integrated Metabolite and Gene Expression Profiles Identify Lipid Biomarkers Associated With Progression of Hepatocellular Carcinoma and Patient Outcomes. Gastroenterology, 2013, 144, 1066-1075.e1.	0.6	199
103	Discrete nature of EpCAM ⁺ and CD90 ⁺ cancer stem cells in human hepatocellular carcinoma. Hepatology, 2013, 57, 1484-1497.	3.6	241
104	Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1083-91.	3.3	156
105	Evaluation of Midkine as a Diagnostic Serum Biomarker in Hepatocellular Carcinoma. Clinical Cancer Research, 2013, 19, 3944-3954.	3.2	108
106	microRNA and inflammatory gene expression as prognostic marker for overall survival in esophageal squamous cell carcinoma. International Journal of Cancer, 2013, 132, 2901-2909.	2.3	44
107	Identification of genomic functional hotspots with copy number alteration in liver cancer. Eurasip Journal on Bioinformatics and Systems Biology, 2013, 2013, 14.	1.4	8
108	Development of a miR-26 Companion Diagnostic Test for Adjuvant Interferon-alpha Therapy in Hepatocellular Carcinoma. International Journal of Biological Sciences, 2013, 9, 303-312.	2.6	27

#	Article	IF	CITATIONS
109	iSubgraph: Integrative Genomics for Subgroup Discovery in Hepatocellular Carcinoma Using Graph Mining and Mixture Models. PLoS ONE, 2013, 8, e78624.	1.1	9
110	Cancer stem cells in the development of liver cancer. Journal of Clinical Investigation, 2013, 123, 1911-1918.	3.9	452
111	Human CCR4+CCR6+Th17 Cells Suppress Autologous CD8+ T Cell Responses. Journal of Immunology, 2012, 188, 6055-6062.	0.4	48
112	A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8212-8217.	3.3	138
113	Transforming the Microenvironment: A Trick of the Metastatic Cancer Cell. Cancer Cell, 2012, 22, 279-280.	7.7	11
114	At the cancer steering wheel: Defining key genomic drivers of liver cancer with next generation sequencing. Journal of Hepatology, 2012, 56, 1412-1414.	1.8	0
115	Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology, 2012, 56, 1792-1803.	3.6	203
116	Integrative Genomic Identification of Genes on 8p Associated With Hepatocellular Carcinoma Progression and Patient Survival. Gastroenterology, 2012, 142, 957-966.e12.	0.6	280
117	MicroRNAs in Liver Disease. Gastroenterology, 2012, 142, 1431-1443.	0.6	248
118	Clinical Implications of Cancer Stem Cell Biology in Hepatocellular Carcinoma. Seminars in Oncology, 2012, 39, 461-472.	0.8	179
119	Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. Hepatology, 2012, 55, 1443-1452.	3.6	110
120	Identification of Cancer Stem Cell-Related MicroRNAs in Hepatocellular Carcinoma. Methods in Molecular Biology, 2012, 826, 163-175.	0.4	10
121	Exploration of Cytokine Signaling in Clinical Management of Hepatocellular Carcinoma. , 2012, , 223-238.		0
122	Association of TP53 Mutations With Stem Cell-Like Gene Expression and Survival of Patients With Hepatocellular Carcinoma. Gastroenterology, 2011, 140, 1063-1070.e8.	0.6	121
123	MicroRNAs and gastroenterological cancers. Drug Discovery Today Disease Mechanisms, 2011, 8, e95-e102.	0.8	0
124	Power play: Scoring our goals for liver cancer with better GWAS study design. Journal of Hepatology, 2011, 54, 823-824.	1.8	7
125	Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells. International Journal of Biological Sciences, 2011, 7, 517-535.	2.6	124
126	SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 2011, 20, 487-499.	7.7	460

#	Article	IF	CITATIONS
127	Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell and Bioscience, 2011, 1, 4.	2.1	105
128	Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine?. Cell and Bioscience, 2011, 1, 5.	2.1	78
129	MicroRNAs in Hepatocellular Carcinoma. , 2011, , 163-188.		1
130	Cooperation of tumorâ€derived HBx mutants and p53â€249 ^{ser} mutant in regulating cell proliferation, anchorageâ€independent growth and aneuploidy in a telomeraseâ€immortalized normal human hepatocyteâ€derived cell line. International Journal of Cancer, 2010, 127, 1011-1020.	2.3	37
131	Mesothelin as a Potential Therapeutic Target in Human Cholangiocarcinoma. Journal of Cancer, 2010, 1, 141-149.	1.2	50
132	Inflammatory and MicroRNA Gene Expression as Prognostic Classifier of Barrett's-Associated Esophageal Adenocarcinoma. Clinical Cancer Research, 2010, 16, 5824-5834.	3.2	62
133	Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20471-20476.	3.3	187
134	A Unique Metastasis Gene Signature Enables Prediction of Tumor Relapse in Early-Stage Hepatocellular Carcinoma Patients. Cancer Research, 2010, 70, 10202-10212.	0.4	846
135	The clinical potential of microRNAs. Journal of Hematology and Oncology, 2010, 3, 37.	6.9	97
136	Let-7g targets collagen type I $\hat{l}\pm 2$ and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology, 2010, 52, 690-697.	1.8	195
137	A Yin-Yang balancing act of the lin28/let-7 link in tumorigenesis. Journal of Hepatology, 2010, 53, 974-975.	1.8	27
138	Molecular Signatures of Hepatocellular Carcinoma Metastasis., 2010,, 241-257.		1
139	Biology of Hepatocellular Carcinoma: Past, Present and Beyond. , 2010, , 3-17.		0
140	Translating the Metastasis Paradigm from Scientific Theory to Clinical Oncology. Clinical Cancer Research, 2009, 15, 2588-2593.	3.2	25
141	New kids on the block: Diagnostic and prognostic microRNAs in hepatocellular carcinoma. Cancer Biology and Therapy, 2009, 8, 1683-1690.	1.5	68
142	MicroRNA Expression in Squamous Cell Carcinoma and Adenocarcinoma of the Esophagus: Associations with Survival. Clinical Cancer Research, 2009, 15, 6192-6200.	3.2	347
143	Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology, 2009, 50, 472-480.	3.6	475
144	Reply:. Hepatology, 2009, 50, 2048-2048.	3.6	2

#	Article	IF	CITATIONS
145	Transcriptome analysis of liver cancer: Ready for the clinic?. Journal of Hepatology, 2009, 50, 1062-1064.	1.8	14
146	Genome-based predictors for HCC outcomes: A matter of tumor and/or stroma. Journal of Hepatology, 2009, 51, 596-597.	1.8	1
147	MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer. New England Journal of Medicine, 2009, 361, 1437-1447.	13.9	778
148	EpCAM-Positive Hepatocellular Carcinoma Cells Are Tumor-Initiating Cells With Stem/Progenitor Cell Features. Gastroenterology, 2009, 136, 1012-1024.e4.	0.6	1,029
149	Genomic Profiling of Human Hepatocellular Carcinoma. , 2009, , 131-182.		0
150	Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology, 2008, 47, 897-907.	3.6	634
151	EpCAM and α-Fetoprotein Expression Defines Novel Prognostic Subtypes of Hepatocellular Carcinoma. Cancer Research, 2008, 68, 1451-1461.	0.4	689
152	Impaired DNA Damage Response, Genome Instability, and Tumorigenesis in SIRT1 Mutant Mice. Cancer Cell, 2008, 14, 312-323.	7.7	715
153	Induction of a unique gene expression profile in primary human hepatocytes by hepatitis C virus core, NS3 and NS5A proteins. Carcinogenesis, 2007, 28, 1552-1560.	1.3	31
154	Future of molecular profiling of human hepatocellular carcinoma. Future Oncology, 2007, 3, 429-439.	1.1	19
155	Activation of Hepatic Stem Cell Marker EpCAM by Wnt–β-Catenin Signaling in Hepatocellular Carcinoma. Cancer Research, 2007, 67, 10831-10839.	0.4	405
156	WNT10B Functional Dualism: \hat{l}^2 -Catenin/Tcf-dependent Growth Promotion or Independent Suppression with Deregulated Expression in Cancer. Molecular Biology of the Cell, 2007, 18, 4292-4303.	0.9	32
157	Use of a Cytokine Gene Expression Signature in Lung Adenocarcinoma and the Surrounding Tissue as a Prognostic Classifier. Journal of the National Cancer Institute, 2007, 99, 1257-1269.	3.0	131
158	Gene Expression Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma. Clinical Cancer Research, 2007, 13, 1133-1139.	3.2	189
159	TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene, 2007, 26, 2166-2176.	2.6	527
160	An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene, 2007, 26, 6361-6371.	2.6	163
161	Effect of Hepatitis C Virus Core Protein on the Molecular Profiling of Human B Lymphocytes. Molecular Medicine, 2006, 12, 47-53.	1.9	30
162	Increased CYP3A4 copy number in TONG/HCC cells but not in DNA from other humans. Pharmacogenetics and Genomics, 2006, 16, 415-427.	0.7	12

#	Article	IF	Citations
163	Redundancy of DNA helicases in p53-mediated apoptosis. Oncogene, 2006, 25, 2119-2123.	2.6	24
164	Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell, 2006, 10, 99-111.	7.7	788
165	Nucleophosmin and human cancer. Cancer Detection and Prevention, 2006, 30, 481-490.	2.1	103
166	The role of cytokines in hepatocellular carcinoma. Journal of Leukocyte Biology, 2006, 80, 1197-1213.	1.5	266
167	Temporal and spatial control of nucleophosmin by the Ran–Crm1 complex in centrosome duplication. Nature Cell Biology, 2005, 7, 823-830.	4.6	260
168	The Molecular Signature of Metastases of Human Hepatocellular Carcinoma. Oncology, 2005, 69, 23-27.	0.9	47
169	The ErbB3-binding protein Ebp1 suppresses androgen receptor-mediated gene transcription and tumorigenesis of prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9890-9895.	3.3	85
170	The p53 Tumor Suppressor Network Is a Key Responder to Microenvironmental Components of Chronic Inflammatory Stress. Cancer Research, 2005, 65, 10255-10264.	0.4	93
171	Loading and Unloading: Orchestrating Centrosome Duplication and Spindle Assembly by Ran/Crm1. Cell Cycle, 2005, 4, 1510-1514.	1.3	54
172	The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene, 2004, 23, 3749-3756.	2.6	66
173	Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology, 2004, 39, 518-527.	3.6	137
174	p53. Chest, 2004, 125, 83S-85S.	0.4	16
175	p53 and p14 increase sensitivity of gastric cells to H. pylori-induced apoptosis. Digestive Diseases and Sciences, 2003, 48, 1284-1291.	1.1	12
176	TP53 and liver carcinogenesis. Human Mutation, 2003, 21, 201-216.	1.1	222
177	Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Medicine, 2003, 9, 416-423.	15.2	805
178	Gene expression profiling of preneoplastic liver disease and liver cancer: a new era for improved early detection and treatment of these deadly diseases?. Carcinogenesis, 2003, 24, 363-369.	1.3	53
179	Involvement of Crm1 in Hepatitis B Virus X Protein-Induced Aberrant Centriole Replication and Abnormal Mitotic Spindles. Molecular and Cellular Biology, 2003, 23, 5282-5292.	1.1	140
180	The Processing of Holliday Junctions by BLM and WRN Helicases Is Regulated by p53. Journal of Biological Chemistry, 2002, 277, 31980-31987.	1.6	107

#	Article	IF	CITATIONS
181	SAGE transcript profiles of normal primary human hepatocytes expressing oncogenic hepatitis B virus X protein. FASEB Journal, 2002, 16, 1665-1667.	0.2	30
182	Molecular pathogenesis of human hepatocellular carcinoma. Toxicology, 2002, 181-182, 43-47.	2.0	158
183	Defective Interplay of Activators and Repressors with TFIIH in Xeroderma Pigmentosum. Cell, 2001, 104, 353-363.	13.5	117
184	Microinjection Technique Used to Study Functional Interaction Between p53 and Hepatitis B Virus X Gene in Apoptosis. Molecular Biotechnology, 2001, 18, 169-178.	1.3	8
185	Distinctive gene expression profiles associated with Hepatitis B virus x protein. Oncogene, 2001, 20, 3674-3682.	2.6	87
186	Hepatitis B virus X mutants derived from human hepatocellular carcinoma retain the ability to abrogate p53-induced apoptosis. Oncogene, 2001, 20, 3620-3628.	2.6	86
187	DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9671-9676.	3.3	191
188	Interaction of the Hepatitis B Virus X Protein with the Crm1-dependent Nuclear Export Pathway. Journal of Biological Chemistry, 2001, 276, 22797-22803.	1.6	85
189	p53 Modulates the Exonuclease Activity of Werner Syndrome Protein. Journal of Biological Chemistry, 2001, 276, 35093-35102.	1.6	95
190	Functional Interaction of p53 and BLM DNA Helicase in Apoptosis. Journal of Biological Chemistry, 2001, 276, 32948-32955.	1.6	129
191	Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. British Journal of Cancer, 2000, 82, 683-690.	2.9	118
192	Identification of a Functional Domain in a GADD45-mediated G2/M Checkpoint. Journal of Biological Chemistry, 2000, 275, 36892-36898.	1.6	84
193	Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene, 1999, 18, 2892-2900.	2.6	425
194	Hepatitis B virus X protein inhibits nucleotide excision repair., 1999, 80, 875-879.		149
195	Centrosome Amplification and a Defective G2–M Cell Cycle Checkpoint Induce Genetic Instability in BRCA1 Exon 11 Isoform–Deficient Cells. Molecular Cell, 1999, 3, 389-395.	4.5	761
196	Drug-induced apoptosis is delayed and reduced in XPD lymphoblastoid cell lines: possible role of TFIIH in p53-mediated apoptotic cell death. Oncogene, 1999, 18, 4681-4688.	2.6	48
197	GADD45 induction of a G2/M cell cycle checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3706-3711.	3.3	583
198	Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain 1 1Edited by K. Yamamoto. Journal of Molecular Biology, 1999, 292, 241-249.	2.0	39

#	Article	IF	Citations
199	p53-Mediated apoptosis is attenuated in Werner syndrome cells. Genes and Development, 1999, 13, 1355-1360.	2.7	161
200	Interaction of p53 with the Human Rad51 Protein. Nucleic Acids Research, 1997, 25, 3868-3874.	6.5	193
201	Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14707-14712.	3.3	303
202	Conformation-dependent phosphorylation of p53. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1686-1691.	3.3	119
203	p53 tumor-suppressor gene: Clues to molecular carcinogenesis. , 1997, 173, 247-255.		80
204	Interactive Effects of p53 Tumor Suppressor Gene and Hepatitis B Virus in Hepatocellular Carcinogenesis., 1997,, 209-218.		3
205	Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2442-2447.	3.3	413
206	The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway Genes and Development, 1996, 10, 1219-1232.	2.7	278
207	Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology, 1996, 24, 1264-1268.	3.6	5
208	p53 modulation of TFIIH–associated nucleotide excision repair activity. Nature Genetics, 1995, 10, 188-195.	9.4	525
209	Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2230-2234.	3.3	657
210	A conserved region in human and Chinese hamster X chromosomes can induce cellular senescence of nickel-transformed Chinese hamster cell lines. Carcinogenesis, 1992, 13, 555-561.	1.3	38
211	Changes in protein phosphorylation in wild-type and nickel-resistant cells and their involvement in morphological elongation. Biology of Metals, 1991, 4, 201-206.	1.1	1
212	Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science, 1991, 251, 796-799.	6.0	180
213	Characterization of a nickel resistant mouse cell line. Biological Trace Element Research, 1989, 21, 97-103.	1.9	5
214	Alteration of Nickel-Binding Proteins in Nickel-Resistant Cells. European Journal of Implant and Refractive Surgery, $1989,1,351\text{-}358.$	0.4	2
215	Genetic toxicology of lead compounds. Carcinogenesis, 1988, 9, 1727-1732.	1.3	112
216	Effect of magnesium on nickel-induced genotoxicity and cell transformation. Carcinogenesis, 1987, 8, 1115-1121.	1.3	59