Mallory P Gobet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2267482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Ion Transport of 1-Ethyl-3-Methylimidazolium Acetate Solutions Containing Carbohydrate Solutes. Journal of the Electrochemical Society, 2019, 166, H721-H729.	2.9	5
2	Alkyl chain length effects of hydroxyl-functionalized imidazolium ionic liquids in the ionothermal synthesis of LiFePO ₄ . Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 292-296.	1.6	2
3	An alternative route to single ion conductivity using multi-ionic salts. Materials Horizons, 2018, 5, 461-473.	12.2	24
4	Enhanced Lithium Oxygen Battery Using a Glyme Electrolyte and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 16367-16375.	8.0	21
5	A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Materials Today, 2018, 21, 341-353.	14.2	258
6	Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1156-1161.	7.1	512
7	Anisotropic Ion Diffusion and Electrochemically Driven Transport in Nanostructured Block Copolymer Electrolytes. Journal of Physical Chemistry B, 2018, 122, 1537-1544.	2.6	39
8	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. Journal of Power Sources, 2018, 377, 26-35.	7.8	67
9	Correlating Li ⁺ -Solvation Structure and its Electrochemical Reaction Kinetics with Sulfur in Subnano Confinement. Journal of Physical Chemistry Letters, 2018, 9, 1739-1745.	4.6	26
10	Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries. Joule, 2018, 2, 927-937.	24.0	303
11	Defect chemistry and electrical properties of garnet-type Li ₇ La ₃ Zr ₂ O ₁₂ . Physical Chemistry Chemical Physics, 2018, 20, 1447-1459.	2.8	64
12	The Impact of Carbohydrate Solutes on the Ionicity of 1-Ethyl-3-Methylimidazolium Acetate Ionic Liquid Solutions. ECS Transactions, 2018, 86, 279-286.	0.5	0
13	Cellulose, Cellobiose, and Glucose Cause Similar Decreases to Molar Conductivity and Drastically Different Increases to Dynamic Viscosity of 1-Ethyl-3-Methylimidazoilum Acetate Based Solvents. ECS Transactions, 2018, 86, 257-268.	0.5	0
14	Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries. Joule, 2018, 2, 2178.	24.0	12
15	Fundamental Limitations of Ionic Conductivity in Polymerized Ionic Liquids. Macromolecules, 2018, 51, 8637-8645.	4.8	103
16	Multinuclear magnetic resonance investigation of cation-anion and anion-solvent interactions in carbonate electrolytes. Journal of Power Sources, 2018, 399, 215-222.	7.8	19
17	Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study. Electrochimica Acta, 2017, 231, 223-229.	5.2	39
18	Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery. ACS Applied Materials & Interfaces, 2017, 9, 17085-17095.	8.0	24

MALLORY P GOBET

#	Article	IF	CITATIONS
19	Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 574-586.	2.8	152
20	A Rayleighian approach for modeling kinetics of ionic transport in polymeric media. Journal of Chemical Physics, 2017, 146, 064902.	3.0	12
21	Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano, 2017, 11, 10462-10471.	14.6	283
22	Exploring the Use of Ionic Liquid Mixtures to Enhance the Performance of Dicationic Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, H5150-H5159.	2.9	9
23	Carbon Composites for a Highâ€Energy Lithium–Sulfur Battey with a Glymeâ€Based Electrolyte. ChemElectroChem, 2017, 4, 209-215.	3.4	26
24	Mechanism of Conductivity Relaxation in Liquid and Polymeric Electrolytes: Direct Link between Conductivity and Diffusivity. Journal of Physical Chemistry B, 2016, 120, 11074-11083.	2.6	101
25	Natural Abundance Oxygen-17 NMR Investigation of Lithium Ion Solvation in Glyme-based Electrolytes. Electrochimica Acta, 2016, 213, 606-612.	5.2	26
26	Towards Better Understanding of Molecular Solvent Behavior in Ionic Liquid-Biopolymer Mixtures. ECS Transactions, 2016, 75, 677-683.	0.5	0
27	Insight on the Li ₂ S electrochemical process in a composite configuration electrode. New Journal of Chemistry, 2016, 40, 2935-2943.	2.8	18
28	Ion Solvation and the Search for a Correlation with Electrode Passivation. Materials Research Society Symposia Proceedings, 2015, 1740, 49.	0.1	0
29	Comparative Study of Ether-Based Electrolytes for Application in Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2015, 7, 13859-13865.	8.0	95
30	Anion Solvation in Carbonate-Based Electrolytes. Journal of Physical Chemistry C, 2015, 119, 27255-27264.	3.1	121
31	An Iodide-Based Li ₇ P ₂ 8I Superionic Conductor. Journal of the American Chemical Society, 2015, 137, 1384-1387.	13.7	298
32	Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. Journal of Power Sources, 2015, 299, 460-464.	7.8	52
33	Lithium chloride molten flux approach to Li2MnO3:LiMO2 (M = Mn, Ni, Co) "composite―synthesis for lithium-ion battery cathode applications. RSC Advances, 2014, 4, 12018-12027.	3.6	5
34	Structural Evolution and Li Dynamics in Nanophase Li ₃ PS ₄ by Solid-State and Pulsed-Field Gradient NMR. Chemistry of Materials, 2014, 26, 3558-3564.	6.7	60
35	New battery strategies with a polymer/Al2O3 separator. Journal of Power Sources, 2014, 263, 52-58.	7.8	74
36	Solid-State 31P NMR, a Relevant Method to Evaluate the Distribution of Phosphates in Semi-hard Cheeses. Food Analytical Methods, 2013, 6, 1544-1550.	2.6	4

#	Article	IF	CITATIONS
37	First-Principles Molecular Dynamics Simulation and Conductivity Measurements of a Molten xLi2O–(1) Tj ETQq1	1.0.7843	14 rgBT /〇
38	Structure and dynamics in yttrium-based molten rare earth alkali fluorides. Journal of Chemical Physics, 2013, 138, 184503.	3.0	33
39	Influence of Solvent on Ion Aggregation and Transport in PY ₁₅ TFSI Ionic Liquid–Aprotic Solvent Mixtures. Journal of Physical Chemistry B, 2013, 117, 10581-10588.	2.6	35
40	Lithium diffusion in lithium nitride by pulsed-field gradient NMR. Physical Chemistry Chemical Physics, 2012, 14, 13535.	2.8	24
41	Self-diffusion coefficient of lithium in molten xLi2O–(1Ⱂx)B2O3 system using high-temperature PFG NMR. Chemical Physics Letters, 2012, 530, 61-63.	2.6	8
42	Distribution and mobility of phosphates and sodium ions in cheese by solidâ€state ³¹ P and doubleâ€quantum filtered ²³ Na NMR spectroscopy. Magnetic Resonance in Chemistry, 2010, 48, 297-303.	1.9	20
43	Determination of aroma compound diffusion in model food systems: Comparison of macroscopic and microscopic methodologies. Journal of Food Engineering, 2010, 100, 557-566.	5.2	7
44	Transport Properties in Cryolitic Melts: NMR Measurements and Molecular Dynamics Calculations of Self-Diffusion Coefficients. ECS Transactions, 2010, 33, 679-684.	0.5	6
45	Investigation of Fluoroacidity in Molten Fluorides by the Combination of High Temperature NMR and Molecular Dynamics. ECS Transactions, 2010, 33, 159-165.	0.5	3
46	In Situ Experimental Approach of the Speciation in Molten Lanthanide and Actinide Fluorides Combining NMR, EXAFS and Molecular Dynamics. ECS Transactions, 2010, 33, 361-369.	0.5	5
47	The effect of salt content on the structure of <i>iota</i> arrageenan systems: ²³ Na DQF NMR and rheological studies. Magnetic Resonance in Chemistry, 2009, 47, 307-312.	1.9	22
48	Ethyl Difluoro(trimethylsilyl)acetate and Difluoro(trimethylsilyl)acetamides – Precursors of 3,3-Difluoroazetidinones. European Journal of Organic Chemistry, 2006, 2006, 4147-4154.	2.4	24