Mohammad Mahdi Najafpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265998/publications.pdf

Version: 2024-02-01

189 papers 6,361 citations

45 h-index 70 g-index

195 all docs 195
docs citations

195 times ranked 4171 citing authors

#	Article	IF	Citations
1	Surprisingly Low Reactivity of Layered Manganese Oxide toward Water Oxidation in Fe/Ni-Free Electrolyte under Alkaline Conditions. Inorganic Chemistry, 2022, 61, 2292-2306.	4.0	21
2	Electrochemical induction of Mn(III) in the structure of Mn(IV) oxide: Toward a new approach for water splitting. International Journal of Hydrogen Energy, 2022, 47, 7813-7822.	7.1	19
3	Role of Pt and PtO ₂ in the Oxygen-Evolution Reaction in the Presence of Iron under Alkaline Conditions. Inorganic Chemistry, 2022, 61, 613-621.	4.0	22
4	Finding the True Catalyst for Water Oxidation at Low Overpotential in the Presence of a Metal Complex. Inorganic Chemistry, 2022, 61, 3801-3810.	4.0	18
5	Catalysis of the Water Oxidation Reaction in the Presence of Iron and a Copper Foil. Inorganic Chemistry, 2022, 61, 5653-5664.	4.0	9
6	Further Insight into the Conversion of a Ni–Fe Metal–Organic Framework during Water-Oxidation Reaction. Inorganic Chemistry, 2022, 61, 5112-5123.	4.0	17
7	Sodium Cobalticarborane: A Promising Precatalyst for Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 464-473.	4.0	3
8	Water Oxidation in the Presence of a Nickel Coordination Compound: Decomposition Products, Fe Impurity in the Electrolyte, and a Candidate as a Catalyst. Journal of Physical Chemistry C, 2022, 126, 9753-9761.	3.1	10
9	Oxygen-evolution reaction by gold and cobalt in iron and nickel free electrolyte. International Journal of Hydrogen Energy, 2021, 46, 1509-1516.	7.1	18
10	In Situ Synthesis of Manganese Oxide as an Oxygenâ€Evolving Catalyst: A New Strategy. Chemistry - A European Journal, 2021, 27, 1330-1336.	3. 3	4
11	A chromium complex under water oxidation: A conversion mechanism and a comprehensive hypothesis. International Journal of Hydrogen Energy, 2021, 46, 3954-3963.	7.1	4
12	Aggregated manganese complex-nanolayered manganese oxide: a new hybrid molecular-inorganic material. Dalton Transactions, 2021, 50, 3324-3336.	3 . 3	1
13	Investigation of photo-electrochemical response of iron oxide/mixed-phase titanium oxide heterojunction toward possible solar energy conversion. International Journal of Hydrogen Energy, 2021, 46, 7241-7253.	7.1	90
14	Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: a Swiss-army-knife catalyst. Scientific Reports, 2021, 11, 6642.	3.3	14
15	Dendrimer-Ni-Based Material: Toward an Efficient Ni–Fe Layered Double Hydroxide for Oxygen-Evolution Reaction. Inorganic Chemistry, 2021, 60, 6073-6085.	4.0	23
16	Oxygen-Evolution Reaction by a Palladium Foil in the Presence of Iron. Inorganic Chemistry, 2021, 60, 5682-5693.	4.0	26
17	Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by <i>In Situ</i> Electrochemical Liquid Transmission Electron Microscopy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19927-19937.	8.0	27
18	Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions. International Journal of Hydrogen Energy, 2021, 46, 19245-19253.	7.1	44

#	Article	IF	Citations
19	Photo-electrochemistry of metallic titanium/mixed phase titanium oxide. International Journal of Hydrogen Energy, 2021, 46, 19433-19445.	7.1	74
20	Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B ₁₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 9494-9505.	6.7	17
21	A dinuclear iron complex as a precatalyst for water oxidation under alkaline conditions. International Journal of Hydrogen Energy, 2021, 46, 29896-29904.	7.1	31
22	The importance of identifying the true catalyst when using Randles-Sevcik equation to calculate turnover frequency. International Journal of Hydrogen Energy, 2021, 46, 37774-37781.	7.1	28
23	Homogeneous or heterogeneous electrocatalysis: reinvestigation of a cobalt coordination compound for water oxidation. Dalton Transactions, 2021, 51, 220-230.	3.3	7
24	Iron–nickel oxide: a promising strategy for water oxidation. New Journal of Chemistry, 2020, 44, 1517-1523.	2.8	8
25	Is nickel phosphide an efficient catalyst for the oxygen-evolution reaction at low overpotentials?. New Journal of Chemistry, 2020, 44, 19630-19641.	2.8	22
26	Water oxidation by a nickel complex: New challenges and an alternative mechanism. International Journal of Hydrogen Energy, 2020, 45, 33563-33573.	7.1	64
27	Revisiting Metal–Organic Frameworks for Oxygen Evolution: A Case Study. Inorganic Chemistry, 2020, 59, 15335-15342.	4.0	29
28	Electrochemical alcohols oxidation mediated by N-hydroxyphthalimide on nickel foam surface. Scientific Reports, 2020, 10, 19378.	3.3	13
29	Electrochemical Synthesis of Sulfinate Esters: Nickel(II)-Catalyzed Oxidative Esterification of Thiols with Alcohols in an Undivided Cell. ACS Omega, 2020, 5, 17947-17954.	3.5	6
30	A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions. Chemistry - A European Journal, 2020, 26, 17063-17068.	3.3	12
31	An iridium-based nanocomposite prepared from an iridium complex with a hydrocarbon-based ligand. New Journal of Chemistry, 2020, 44, 15636-15645.	2.8	6
32	New findings and current controversies on oxidation of benzyl alcohol by a copper complex. Materials Advances, 2020, 1, 441-449.	5.4	2
33	Water splitting by a pentanuclear iron complex. International Journal of Hydrogen Energy, 2020, 45, 17434-17443.	7.1	48
34	Oxygen-evolution reaction by nickel/nickel oxide interface in the presence of ferrate(VI). Scientific Reports, 2020, 10, 8757.	3.3	59
35	New findings and current controversies in the reaction of ruthenium red and ammonium cerium(iv) nitrate: focus on the precipitated compound. Catalysis Science and Technology, 2020, 10, 2491-2502.	4.1	2
36	A synthetic manganese–calcium cluster similar to the catalyst of Photosystem II: challenges for biomimetic water oxidation. Dalton Transactions, 2020, 49, 5597-5605.	3.3	13

#	Article	IF	CITATIONS
37	Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction. New Journal of Chemistry, 2020, 44, 3514-3523.	2.8	58
38	Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts. Coordination Chemistry Reviews, 2020, 409, 213183.	18.8	61
39	Water oxidation by Ferritin: A semi-natural electrode. Scientific Reports, 2019, 9, 11499.	3.3	6
40	A manganese(<scp>ii</scp>) phthalocyanine under water-oxidation reaction: new findings. Dalton Transactions, 2019, 48, 12147-12158.	3.3	13
41	Influence of osmolytes on the stability of thylakoidâ€based dyeâ€sensitized solar cells. International Journal of Energy Research, 2019, 43, 8878.	4.5	2
42	Oxidation of alkylarenes by modified graphite. Materials Research Express, 2019, 6, 125607.	1.6	4
43	Nickel–Vanadium Layered Double Hydroxide under Water-Oxidation Reaction: New Findings and Challenges. ACS Sustainable Chemistry and Engineering, 2019, 7, 17252-17262.	6.7	35
44	A nickel(<scp>ii</scp>) complex under water-oxidation reaction: what is the true catalyst?. Dalton Transactions, 2019, 48, 547-557.	3.3	30
45	Investigation of the photoelectrochemical properties of layered manganese oxide. New Journal of Chemistry, 2019, 43, 4049-4058.	2.8	6
46	Nanosized (Ni _{1â^'x} Zn _x)Fe ₂ O ₄ for water oxidation. Nanoscale Advances, 2019, 1, 686-695.	4.6	5
47	Electrochemical water oxidation by simple manganese salts. Scientific Reports, 2019, 9, 7749.	3.3	19
48	Unsupervised classification of PSII with and without water-oxidizing complex samples by PARAFAC resolution of excitation-emission fluorescence images. Journal of Photochemistry and Photobiology B: Biology, 2019, 195, 58-66.	3.8	3
49	A new decomposition mechanism for metal complexes under water-oxidation conditions. Scientific Reports, 2019, 9, 7483.	3.3	11
50	Water oxidation by manganese oxides. Advances in Inorganic Chemistry, 2019, 74, 115-150.	1.0	2
51	A trimetallic organometallic precursor for efficient water oxidation. Scientific Reports, 2019, 9, 3734.	3.3	7
52	A simple, facile and low-cost method for the preparation of mixed-phase titanium oxide: toward efficient photoelectrochemical water oxidation. New Journal of Chemistry, 2019, 43, 6989-7000.	2.8	11
53	Cobalt/Cobalt Oxide Surface for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 6093-6105.	6.7	44
54	Molybdenum carbide as an efficient and durable catalyst for aqueous Knoevenagel condensation. New Journal of Chemistry, 2019, 43, 16437-16440.	2.8	10

#	Article	IF	Citations
55	A tetranuclear nickel(II) complex for water oxidation: Meeting new challenges. International Journal of Hydrogen Energy, 2019, 44, 2857-2867.	7.1	59
56	Water oxidation catalyzed by two cobalt complexes: new challenges and questions. Catalysis Science and Technology, 2018, 8, 1840-1848.	4.1	43
57	Biohybrid solar cells: Fundamentals, progress, and challenges. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 134-156.	11.6	76
58	Water oxidation by $Ni(1,4,8,11$ -tetraazacyclotetradecane)2+ in the presence of carbonate: new findings and an alternative mechanism. Dalton Transactions, 2018, 47, 6519-6527.	3.3	30
59	An aluminum/cobalt/iron/nickel alloy as a precatalyst for water oxidation. International Journal of Hydrogen Energy, 2018, 43, 2083-2090.	7.1	62
60	Water oxidation by simple manganese salts in the presence of cerium(<scp>iv</scp>) ammonium nitrate: towards a complete picture. Dalton Transactions, 2018, 47, 1557-1565.	3.3	11
61	Toward Escherichia coli bacteria machine for water oxidation. Photosynthesis Research, 2018, 136, 257-267.	2.9	2
62	Nanosized rhodium oxide for water oxidation: An organometallic precursor for the preparation of rhodium oxide. Applied Organometallic Chemistry, 2018, 32, e4118.	3.5	3
63	A mononuclear cobalt complex for water oxidation: new controversies and puzzles. Dalton Transactions, 2018, 47, 16668-16673.	3.3	15
64	A transparent electrode with water-oxidizing activity. International Journal of Hydrogen Energy, 2018, 43, 22896-22904.	7.1	30
65	The application of a nickel(<scp>ii</scp>) Schiff base complex in water oxidation: the importance of nanosized materials. Catalysis Science and Technology, 2018, 8, 3954-3968.	4.1	34
66	Water oxidation by a manganese–potassium cluster: Mn oxide as a kinetically dominant "true―catalyst for water oxidation. Catalysis Science and Technology, 2018, 8, 4390-4398.	4.1	16
67	Links between peptides and Mn oxide: nano-sized manganese oxide embedded in a peptide matrix. New Journal of Chemistry, 2018, 42, 10067-10077.	2.8	1
68	Water oxidation by a copper(<scp>ii</scp>) complex: new findings, questions, challenges and a new hypothesis. Dalton Transactions, 2018, 47, 9021-9029.	3.3	37
69	Nanosized silver bromide: an efficient catalyst for alcohol oxidation in the presence of a multinuclear silver complex. New Journal of Chemistry, 2018, 42, 12172-12179.	2.8	1
70	An efficient nickel oxides/nickel structure for water oxidation: a new strategy. New Journal of Chemistry, 2017, 41, 1909-1913.	2.8	14
71	Iron oxide deposited on metallic nickel for water oxidation. Sustainable Energy and Fuels, 2017, 1, 658-663.	4.9	11
72	Transformation of La0.65Sr0.35MnO3 in electrochemical water oxidation. International Journal of Hydrogen Energy, 2017, 42, 8560-8568.	7.1	16

#	Article	IF	CITATIONS
73	Nanolayered manganese oxides: insights from inorganic electrochemistry. Catalysis Science and Technology, 2017, 7, 3499-3510.	4.1	27
74	Iron oxide on carbonâ€based supports as efficient catalysts for organic compounds oxidation. Applied Organometallic Chemistry, 2017, 31, e3892.	3.5	5
75	Rethink about electrolyte: Potassium fluoride as a promising additive to an electrolyte for the water oxidation by a nanolayered Mn oxide. International Journal of Hydrogen Energy, 2017, 42, 15160-15166.	7.1	14
76	A proposed mechanism to form nanosized Mn oxides from the decomposition of \hat{l}^2 -cyclodextrin-Mn complex: Toward nanosized water-splitting catalysts with special morphology. International Journal of Hydrogen Energy, 2017, 42, 11187-11198.	7.1	7
77	PARAFAC study of bovine serum albumin conformational changes in the interaction with nanosized manganese oxide as a biomimetic model for water-oxidizing complex. International Journal of Hydrogen Energy, 2017, 42, 9733-9743.	7.1	12
78	Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water-splitting systems: 3-Electrochemical studies. International Journal of Hydrogen Energy, 2017, 42, 60-67.	7.1	17
79	Nanosized manganese oxide/holmium oxide: a new composite for water oxidation. New Journal of Chemistry, 2017, 41, 13732-13741.	2.8	7
80	A new strategy to make an artificial enzyme: photosystem II around nanosized manganese oxide. Catalysis Science and Technology, 2017, 7, 4451-4461.	4.1	7
81	A nanosized Mn oxide/boron nitride composite as a catalyst for water oxidation. New Journal of Chemistry, 2017, 41, 10627-10633.	2.8	11
82	Nanosized manganese oxide supported on carbon black: A new, cheap and green composite for water oxidation. International Journal of Hydrogen Energy, 2017, 42, 255-264.	7.1	23
83	Manganese oxide supported on gold/iron as a water-oxidizing catalyst in artificial photosynthetic systems. Dalton Transactions, 2016, 45, 9201-9208.	3.3	3
84	Treated nanolayered Mn oxide by potassium fluoride: An improvement for nanolayered Mn oxide toward water oxidation. International Journal of Hydrogen Energy, 2016, 41, 21203-21211.	7.1	8
85	Toward a nanosized iron based water-oxidizing catalyst. International Journal of Hydrogen Energy, 2016, 41, 22635-22642.	7.1	10
86	The conversion of CoSe 2 to Co oxide under the electrochemical water oxidation condition. International Journal of Hydrogen Energy, 2016, 41, 13469-13475.	7.1	34
87	Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation. Inorganic Chemistry, 2016, 55, 8827-8832.	4.0	29
88	Engineered polypeptide around nano-sized manganese–calcium oxide as an artificial water-oxidizing enzyme mimicking natural photosynthesis: Toward artificial enzymes with highly active site densities. International Journal of Hydrogen Energy, 2016, 41, 17826-17836.	7.1	22
89	Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water splitting systems: 1-synthesis and characterization. International Journal of Hydrogen Energy, 2016, 41, 18465-18471.	7.1	8
90	An efficient and inexpensive water-oxidizing manganese-based oxide electrode. Dalton Transactions, 2016, 45, 16948-16954.	3.3	13

#	Article	IF	CITATIONS
91	Nano-sized manganese oxide coated sea sand: AÂnew water-oxidizing catalyst. International Journal of Hydrogen Energy, 2016, 41, 22866-22875.	7.1	10
92	Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water splitting systems: 2-Water-oxidizing activities. International Journal of Hydrogen Energy, 2016, 41, 18472-18477.	7.1	13
93	Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation. Photosynthesis Research, 2016, 130, 225-235.	2.9	7
94	Highly dispersed PtO2 on layered Mn oxide as water-oxidizing catalysts. International Journal of Hydrogen Energy, 2016, 41, 6798-6804.	7.1	8
95	Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews, 2016, 116, 2886-2936.	47.7	549
96	Water oxidation by a soluble iron(<scp>iii</scp>)–cyclen complex: new findings. Dalton Transactions, 2016, 45, 2618-2623.	3.3	43
97	Polypeptide and Mn–Ca oxide: Toward a biomimetic catalystÂforÂwater-splitting systems. International Journal of Hydrogen Energy, 2016, 41, 5504-5512.	7.1	24
98	A highly dispersible, magnetically separable and environmentally friendly nano-sized catalyst for water oxidation. International Journal of Hydrogen Energy, 2016, 41, 4616-4623.	7.1	36
99	Nano-sized Mn oxide/agglomerated silsesquioxane composite as a good catalyst for water oxidation. Photosynthesis Research, 2016, 130, 73-81.	2.9	3
100	Manganese oxides as water-oxidizing catalysts for artificial photosynthetic systems: The effect of support. International Journal of Hydrogen Energy, 2016, 41, 5475-5483.	7.1	12
101	Recent progress in the studies of structure and function of photosystems I and II. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 173-175.	3.8	32
102	Nano-sized Mn oxide: A true catalyst in the water-oxidation reaction. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 127-132.	3.8	13
103	Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catalysis, 2015, 5, 1499-1512.	11.2	55
104	The mechanism of water oxidation catalyzed by nanolayered manganese oxides: New insights. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 133-138.	3.8	7
105	QSAR analysis for nano-sized layered manganese–calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 146-155.	3.8	8
106	Nano-sized Mn3O4 and \hat{l}^2 -MnOOH from the decomposition of \hat{l}^2 -cyclodextrin-Mn: 2. The water-oxidizing activities. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 112-118.	3.8	15
107	The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation. Photosynthesis Research, 2015, 126, 489-498.	2.9	4
108	Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin–Mn: 1. Synthesis and characterization. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 106-111.	3.8	8

#	Article	IF	Citations
109	Platinum/manganese oxide nanocomposites as water-oxidizing catalysts: New findings and current controversies. International Journal of Hydrogen Energy, 2015, 40, 10825-10832.	7.1	54
110	New findings and the current controversies for water oxidation by a copper(<scp>ii</scp>)-azo complex: homogeneous or heterogeneous?. Dalton Transactions, 2015, 44, 15435-15440.	3.3	48
111	Gold nanorods or nanoparticles deposited on layered manganese oxide: new findings. New Journal of Chemistry, 2015, 39, 7260-7267.	2.8	8
112	Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for water oxidation with cerium(<scp>iv</scp>) ammonium nitrate: support from natural sources. Dalton Transactions, 2015, 44, 15441-15449.	3.3	15
113	The biological water-oxidizing complex at the nano–bio interface. Trends in Plant Science, 2015, 20, 559-568.	8.8	46
114	Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold. Photosynthesis Research, 2015, 126, 477-487.	2.9	12
115	Self-healing for nanolayered manganese oxides in the presence of cerium(<scp>iv</scp>) ammonium nitrate: new findings. New Journal of Chemistry, 2015, 39, 2547-2550.	2.8	21
116	Artificial photosynthesis. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 1-3.	3.8	7
117	Nano-sized Mn oxides as true catalysts for alcohol oxidation by a mononuclear manganese(<scp>ii</scp>) complex. Dalton Transactions, 2015, 44, 15121-15125.	3.3	15
118	An engineered polypeptide around nano-sized manganese–calcium oxide: copying plants for water oxidation. Dalton Transactions, 2015, 44, 15271-15278.	3.3	19
119	Carbon for engineering of a water-oxidizing catalyst. Dalton Transactions, 2015, 44, 20991-20998.	3.3	7
120	Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 294-306.	1.0	25
121	Applications of the "nano to bulk―Mn oxides: Mn oxide as a Swiss army knife. Coordination Chemistry Reviews, 2015, 285, 65-75.	18.8	57
122	A very simple and high-yield method to synthesize nanolayered Mn oxide. Dalton Transactions, 2015, 44, 1039-1045.	3.3	9
123	Current challenges in photosynthesis: from natural to artificial. Frontiers in Plant Science, 2014, 5, 232.	3.6	15
124	Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: From the water-oxidizing complex in photosystem II to nano-sized manganese oxides. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1395-1410.	1.0	15
125	A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site. Plant Physiology and Biochemistry, 2014, 81, 3-15.	5.8	9
126	Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems. Journal of Photochemistry and Photobiology B: Biology, 2014, 133, 124-139.	3.8	27

#	Article	IF	CITATIONS
127	Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Transactions, 2014, 43, 10866-10876.	3.3	49
128	The effect of different metal ions between nanolayers of manganese oxide on water oxidation. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 247-252.	3.8	15
129	Antimicrobial effects of silver deposited on nanolayered manganese oxide. RSC Advances, 2014, 4, 64688-64691.	3.6	2
130	A hexanuclear manganese(<scp>ii</scp>) complex: synthesis, characterization and catalytic activity toward organic sulfide oxidation. New Journal of Chemistry, 2014, 38, 5069-5074.	2.8	13
131	Nanolayered manganese–calcium oxide as an efficient catalyst toward organic sulfide oxidation. RSC Advances, 2014, 4, 10851-10855.	3.6	9
132	Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Advances, 2014, 4, 37613-37619.	3.6	25
133	A dinuclear iron complex with a single oxo bridge as an efficient water-oxidizing catalyst in the presence of cerium(<scp>iv</scp>) ammonium nitrate: new findings and current controversies. Catalysis Science and Technology, 2014, 4, 30-33.	4.1	55
134	Nanolayered manganese oxides as water-oxidizing catalysts: the effects of Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 36017-36023.	3.6	17
135	Nano-sized layered manganese oxide in a poly- <scp>L</scp> -glutamic acid matrix: a biomimetic, homogenized, heterogeneous structural model for the water-oxidizing complex in photosystem II. RSC Advances, 2014, 4, 39077-39081.	3.6	7
136	Manganese oxide as a water-oxidizing catalyst: from the bulk to \tilde{A} ngstr \tilde{A} ¶m-scale. New Journal of Chemistry, 2014, 38, 852.	2.8	18
137	A water-oxidizing dinuclear iron complex as an efficient catalyst toward organic sulfide oxidation. Journal of Coordination Chemistry, 2014, 67, 3026-3032.	2.2	6
138	Mechanism of water oxidation by nanolayered manganese oxide: a step forward. RSC Advances, 2014, 4, 6375-6378.	3.6	25
139	The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture. Dalton Transactions, 2014, 43, 13122-13135.	3.3	47
140	Nanolayered manganese-calcium oxide as an efficient and environmentally friendly catalyst for alcohol oxidation. Journal of Molecular Catalysis A, 2014, 394, 303-308.	4.8	18
141	Nanolayered manganese oxide/C ₆₀ composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Transactions, 2014, 43, 12058-12064.	3.3	30
142	Gold or silver deposited on layered manganese oxide: a functional model for the water-oxidizing complex in photosystem II. Photosynthesis Research, 2013, 117, 423-429.	2.9	27
143	An approach for catalyst design in artificial photosynthetic systems: focus on nanosized inorganic cores within proteins. Photosynthesis Research, 2013, 117, 197-205.	2.9	9
144	Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Transactions, 2013, 42, 14603.	3.3	53

#	Article	IF	Citations
145	A simple mathematical model for manganese oxide-coated montmorillonite as a catalyst for water oxidation: from nano to macro sized manganese oxide. Dalton Transactions, 2013, 42, 11012.	3.3	15
146	Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Transactions, 2013, 42, 12173.	3.3	85
147	Imidazolium or guanidinium/layered manganese (III, IV) oxide hybrid as a promising structural model for the water-oxidizing complex of Photosystem II for artificial photosynthetic systems. Photosynthesis Research, 2013, 117, 413-421.	2.9	7
148	Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chemical Communications, 2013, 49, 8824.	4.1	52
149	Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Advances, 2013, 3, 24069.	3.6	27
150	Conversions of Mn oxides to nanolayered Mn oxide in electrochemical water oxidation at near neutral pH, all to a better catalyst: catalyst evolution. Dalton Transactions, 2013, 42, 16683.	3.3	61
151	Photodamage of the manganese–calcium oxide: a model for UV-induced photodamage of the water oxidizing complex in photosystem II. Dalton Transactions, 2013, 42, 4772.	3.3	11
152	Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum. Dalton Transactions, 2013, 42, 5085.	3.3	50
153	A 2-(2-hydroxyphenyl)-1H-benzimidazole–manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II. Dalton Transactions, 2013, 42, 879.	3.3	46
154	Water oxidation by nano-layered manganese oxides in the presence of cerium(iv) ammonium nitrate: important factors and a proposed self-repair mechanism. New Journal of Chemistry, 2013, 37, 2448.	2.8	67
155	Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8801-8806.	7.1	99
156	Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. Journal of the Royal Society Interface, 2012, 9, 2383-2395.	3.4	126
157	Nano-layered manganese oxides as low-cost, easily synthesized, environmentally friendly and efficient catalysts for epoxidation of olefins. RSC Advances, 2012, 2, 3654.	3.6	26
158	A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Transactions, 2012, 41, 11026.	3.3	89
159	Biological water-oxidizing complex: a nano-sized manganese–calcium oxide in a protein environment. Photosynthesis Research, 2012, 114, 1-13.	2.9	46
160	Nano-sized manganese oxide: a proposed catalyst for water oxidation in the reaction of some manganese complexes and cerium(iv) ammonium nitrate. Dalton Transactions, 2012, 41, 10292.	3.3	91
161	Nanoscale manganese oxide within Faujasite zeolite as an efficient and biomimetic water oxidizing catalyst. Dalton Transactions, 2012, 41, 10156.	3.3	52
162	A manganese oxide with phenol groups as a promising structural model for water oxidizing complex in Photosystem II: a â€~golden fish'. Dalton Transactions, 2012, 41, 3906.	3.3	57

#	Article	IF	CITATIONS
163	Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Transactions, 2012, 41, 7134.	3.3	67
164	Biomineralization: a proposed evolutionary origin for inorganic cofactors of enzymes. Theory in Biosciences, 2012, 131, 265-272.	1.4	11
165	Nano-sized manganese oxide–bovine serum albumin was synthesized and characterized. It is promising and biomimetic catalyst for water oxidation. RSC Advances, 2012, 2, 11253.	3. 6	38
166	Amorphous manganese oxide-coated montmorillonite as an efficient catalyst for water oxidation. New Journal of Chemistry, 2012, 36, 2514.	2.8	49
167	Calcium manganese(iv) oxides: biomimetic and efficient catalysts for water oxidation. Dalton Transactions, 2012, 41, 4799.	3.3	90
168	Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: From manganese complexes to nano-sized manganese oxides. International Journal of Hydrogen Energy, 2012, 37, 8753-8764.	7.1	206
169	Biological water oxidation: Lessons from Nature. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1110-1121.	1.0	82
170	New mononuclear manganese(II) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) – selective catalyst in UHP oxidation of sulfides. Polyhedron, 2012, 34, 202-209.	2.2	18
171	Hollandite as a Functional and Structural Model for the Biological Water Oxidizing Complex: Manganese-Calcium Oxide Minerals as a Possible Evolutionary Origin for the CaMn ₄ Cluster of the Biological Water Oxidizing Complex. Geomicrobiology Journal, 2011, 28. 714-718.	2.0	52
172	Mixed-valence manganese calcium oxides as efficient catalysts for water oxidation. Dalton Transactions, 2011, 40, 3793-3795.	3. 3	91
173	Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Transactions, 2011, 40, 9374.	3.3	94
174	Self-assembled layered hybrid [Ru(bpy)3]2+/manganese(iii,iv) oxide: a new and efficient strategy for water oxidation. Chemical Communications, 2011, 47, 11724.	4.1	58
175	Oxygen evolving complex in Photosystem II: Better than excellent. Dalton Transactions, 2011, 40, 9076.	3.3	83
176	A soluble form of nano-sized colloidal manganese(iv) oxide as an efficient catalyst for water oxidation. Dalton Transactions, 2011, 40, 3805.	3.3	76
177	Amorphous Manganese-Calcium Oxides as a Possible Evolutionary Origin for the CaMn4 Cluster in Photosystem II. Origins of Life and Evolution of Biospheres, 2011, 41, 237-247.	1.9	57
178	Synthesis, Xâ€ray structure, characterization and catalytic activity of a polymeric manganese(II) complex with iminodiacetate. Applied Organometallic Chemistry, 2011, 25, 559-563.	3.5	25
179	The first pentanuclear heterobimetallic coordination cation with Celll, CelV and Mnll. Inorganic Chemistry Communication, 2011, 14, 125-127.	3.9	43
180	Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: Lessons from simple models. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 111-117.	3.8	78

#	Article	IF	Citations
181	Synthesis, structural characterization and alcohol oxidation activity of a new mononuclear manganese(II) complex. Transition Metal Chemistry, 2010, 35, 297-303.	1.4	19
182	Calcium Manganese(III) Oxides (CaMn ₂ O ₄ â< <i>i>x</i> ꀉH ₂ O) as Biomimetic Oxygenâ€Evolving Catalysts. Angewandte Chemie - International Edition, 2010, 49, 2233-2237.	13.8	478
183	Solution structure of a seven coordinated manganese(II) complex via electrospray ionization mass spectrometry. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1168-1170.	3.9	16
184	Two new silver(I) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz): Preparation, characterization, crystal structure and alcohol oxidation activity in the presence of oxone. Polyhedron, 2010, 29, 2837-2843.	2.2	38
185	Synthesis, characterization, crystal structure and oxygen-evolution activity of a manganese(II) complex with 2,4,6-tris (2-pyridyl)-1,3,5-triazine. Polyhedron, 2010, 29, 3246-3250.	2.2	19
186	Heterogeneous water oxidation by bidentate Schiff base manganese complexes in the presence of cerium(IV) ammonium nitrate. Transition Metal Chemistry, 2009, 34, 367-372.	1.4	20
187	Guanidinium Bis(pyridine-2,6-dicarboxylato-N,O,O)manganese(II). Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X23-X24.	0.1	0
188	Crystal Structure of Gua4[Cu2(Cit)2] {Gua = Guanidinium, Cit = Citrate = 2-hydroxo-1,2,3-tricarboxylatopropane}. Analytical Sciences: X-ray Structure Analysis Online, 2007, 23, X123-X124.	0.1	6
189	A chemical evolutionâ€ike method to synthesize a waterâ€oxidizing catalyst. ChemElectroChem, 0, , .	3.4	2