Ferry Ossendorp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265453/publications.pdf

Version: 2024-02-01

22153 29157 12,074 161 59 104 citations h-index g-index papers 164 164 164 14417 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Quantification of Lipid and Peptide Content in Antigenic Peptide-loaded Liposome Formulations by Reversed-phase UPLC using UV Absorbance and Evaporative Light Scattering Detection. Journal of Pharmaceutical Sciences, 2022, 111, 1040-1049.	3.3	1
2	Dominant Antiviral CD8+ T Cell Responses Empower Prophylactic Antibody-Eliciting Vaccines Against Cytomegalovirus. Frontiers in Immunology, 2022, 13, 680559.	4.8	4
3	Pyroptosis-inducing active caspase-1 as a genetic adjuvant in anti-cancer DNA vaccination. Vaccine, 2022, 40, 2087-2098.	3.8	10
4	Combination of Photodynamic Therapy and Therapeutic Vaccination. Methods in Molecular Biology, 2022, 2451, 597-604.	0.9	0
5	Combination of Photodynamic Therapy and Immune Checkpoint Blockade. Methods in Molecular Biology, 2022, 2451, 589-596.	0.9	O
6	Measuring the Antitumor T-Cell Response in the Context of Photodynamic Therapy. Methods in Molecular Biology, 2022, 2451, 579-588.	0.9	1
7	M1-derived extracellular vesicles enhance photodynamic therapy and promote immunological memory in preclinical models of colon cancer. Journal of Nanobiotechnology, 2022, 20, .	9.1	13
8	A novel virus-like drug conjugate (VDC) in combination with immune checkpoint inhibitors for the treatment of primary tumors and distant metastasis Journal of Clinical Oncology, 2022, 40, e14544-e14544.	1.6	2
9	Lipid A analog CRX-527 conjugated to synthetic peptides enhances vaccination efficacy and tumor control. Npj Vaccines, 2022, 7, .	6.0	3
10	A third vaccination with a single TÂcell epitope confers protection in a murine model of SARS-CoV-2 infection. Nature Communications, 2022, 13, .	12.8	29
11	Simplified Monopalmitoyl Tollâ€like Receptor 2 Ligand Miniâ€UPam for Selfâ€Adjuvanting Neoantigenâ€Based Synthetic Cancer Vaccines. ChemBioChem, 2021, 22, 1215-1222.	2.6	5
12	Autophagy regulates longâ€term crossâ€presentation by murine dendritic cells. European Journal of Immunology, 2021, 51, 835-847.	2.9	20
13	Multivalent, Stabilized Mannoseâ€6â€Phosphates for the Targeted Delivery of Tollâ€Like Receptor Ligands and Peptide Antigens. ChemBioChem, 2021, 22, 434-440.	2.6	6
14	Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics, 2021, 13, 596.	4.5	21
15	Phase I trial to determine safety and immunogenicity of amplivant, a synthetic toll-like receptor 2 ligand, conjugated to two HPV16 E6 synthetic long peptides Journal of Clinical Oncology, 2021, 39, 2614-2614.	1.6	3
16	Mechanism of action of PDâ€1 receptor/ligand targeted cancer immunotherapy. European Journal of Immunology, 2021, 51, 1911-1920.	2.9	31
17	Distinct antigen uptake receptors route to the same storage compartments for crossâ€presentation in dendritic cells. Immunology, 2021, 164, 494-506.	4.4	8
18	Immune Checkpoint Therapy: Tumor Draining Lymph Nodes in the Spotlights. International Journal of Molecular Sciences, 2021, 22, 9401.	4.1	16

#	Article	IF	Citations
19	Zinc-Phthalocyanine-Loaded Extracellular Vesicles Increase Efficacy and Selectivity of Photodynamic Therapy in Co-Culture and Preclinical Models of Colon Cancer. Pharmaceutics, 2021, 13, 1547.	4.5	12
20	Combining Photodynamic Therapy with Immunostimulatory Nanoparticles Elicits Effective Anti-Tumor Immune Responses in Preclinical Murine Models. Pharmaceutics, 2021, 13, 1470.	4.5	13
21	Identification of a neo-epitope dominating endogenous CD8 T cell responses to MC-38 colorectal cancer. Oncolmmunology, 2020, 9, 1673125.	4.6	40
22	Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells. Journal of Controlled Release, 2020, 320, 19-31.	9.9	26
23	Self-Adjuvanting Cancer Vaccines from Conjugation-Ready Lipid A Analogues and Synthetic Long Peptides. Journal of Medicinal Chemistry, 2020, 63, 11691-11706.	6.4	28
24	Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics, 2020, 12, 1054.	4.5	77
25	Doxorubicin Loaded Poloxamer Thermosensitive Hydrogels: Chemical, Pharmacological and Biological Evaluation. Molecules, 2020, 25, 2219.	3.8	14
26	Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Science Translational Medicine, 2020, 12, .	12.4	229
27	Immunogenicity of rat-neu+ mouse mammary tumours determines the T cell-dependent therapeutic efficacy of anti-neu monoclonal antibody treatment. Scientific Reports, 2020, 10, 3933.	3.3	6
28	Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. Journal of Clinical Medicine, 2020, 9, 333.	2.4	72
29	Thermosensitive hydrogels as sustained drug delivery system for CTLA-4 checkpoint blocking antibodies. Journal of Controlled Release, 2020, 323, 1-11.	9.9	47
30	PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors., 2019, 7, 217.		47
31	Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. Journal of Controlled Release, 2019, 315, 114-125.	9.9	31
32	Effective chemoimmunotherapy by co-delivery of doxorubicin and immune adjuvants in biodegradable nanoparticles. Theranostics, 2019, 9, 6485-6500.	10.0	45
33	A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control. Oncolmmunology, 2019, 8, 1652539.	4.6	45
34	Dual Synthetic Peptide Conjugate Vaccine Simultaneously Triggers TLR2 and NOD2 and Activates Human Dendritic Cells. Bioconjugate Chemistry, 2019, 30, 1150-1161.	3.6	24
35	Combined Inhibition of TGF- \hat{l}^2 Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models. Cells, 2019, 8, 320.	4.1	82
36	Peptides conjugated to 2-alkoxy-8-oxo-adenine as potential synthetic vaccines triggering TLR7. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1340-1344.	2.2	17

3

#	Article	IF	Citations
37	Visualization and Quantification of High-Dimensional Cytometry Data using Cytofast and the Upstream Clustering Methods FlowSOM and Cytosplore. Journal of Visualized Experiments, 2019, , .	0.3	4
38	FcγR interaction is not required for effective antiâ€PD‣1 immunotherapy but can add additional benefit depending on the tumor model. International Journal of Cancer, 2019, 144, 345-354.	5.1	12
39	A Restricted Role for $Fc\hat{l}^3R$ in the Regulation of Adaptive Immunity. Journal of Immunology, 2018, 200, 2615-2626.	0.8	14
40	Sustained crossâ€presentation capacity of murine splenic dendritic cell subsets in vivo. European Journal of Immunology, 2018, 48, 1164-1173.	2.9	8
41	Linking T cell epitopes to a common linear B cell epitope: A targeting and adjuvant strategy to improve T cell responses. Molecular Immunology, 2018, 93, 115-124.	2.2	15
42	Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. Journal of Controlled Release, 2018, 269, 347-354.	9.9	75
43	High $Fc\hat{l}^{3}R$ Expression on Intratumoral Macrophages Enhances Tumor-Targeting Antibody Therapy. Journal of Immunology, 2018, 201, 3741-3749.	0.8	11
44	Novel TLR2-binding adjuvant induces enhanced T cell responses and tumor eradication. , 2018, 6, 146.		50
45	Cytofast: A workflow for visual and quantitative analysis of flow and mass cytometry data to discover immune signatures and correlations. Computational and Structural Biotechnology Journal, 2018, 16, 435-442.	4.1	45
46	Cationic Liposomes: A Flexible Vaccine Delivery System for Physicochemically Diverse Antigenic Peptides. Pharmaceutical Research, 2018, 35, 207.	3.5	44
47	Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Frontiers in Immunology, 2018, 9, 884.	4.8	54
48	Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. Journal of Controlled Release, 2018, 285, 56-66.	9.9	28
49	Chemical Control over T-Cell Activation <i>in Vivo</i> Using Deprotection of <i>trans</i> -Cyclooctene-Modified Epitopes. ACS Chemical Biology, 2018, 13, 1569-1576.	3.4	29
50	Formation of Immune Complexes with a Tetanus-Derived B Cell Epitope Boosts Human T Cell Responses to Covalently Linked Peptides in an Ex Vivo Blood Loop System. Journal of Immunology, 2018, 201, 87-97.	0.8	16
51	A Dual-Color Bioluminescence Reporter Mouse for Simultaneous in vivo Imaging of T Cell Localization and Function. Frontiers in Immunology, 2018, 9, 3097.	4.8	32
52	Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCl Insight, 2018, 3, .	5.0	216
53	FcÎ ³ RI expression on macrophages is required for antibody-mediated tumor protection by cytomegalovirus-based vaccines. Oncotarget, 2018, 9, 29392-29402.	1.8	10
54	Efficient Eradication of Established Tumors in Mice with Cationic Liposome-Based Synthetic Long-Peptide Vaccines. Cancer Immunology Research, 2017, 5, 222-233.	3.4	60

#	Article	IF	CITATIONS
55	Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Molecular Pharmaceutics, 2017, 14, 1482-1493.	4.6	46
56	PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncolmmunology, 2017, 6, e1294299.	4.6	114
57	C1q-Dependent Dendritic Cell Cross-Presentation of In Vivo–Formed Antigen–Antibody Complexes. Journal of Immunology, 2017, 198, 4235-4243.	0.8	21
58	PD-L1 immune suppression in cancer: Tumor cells or host cells?. Oncolmmunology, 2017, 6, e1325982.	4.6	11
59	Photodynamic-Immune Checkpoint Therapy Eradicates Local and Distant Tumors by CD8+ T Cells. Cancer Immunology Research, 2017, 5, 832-838.	3.4	95
60	The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemotherapy and Pharmacology, 2017, 80, 881-894.	2.3	61
61	CD4+ T Cell and NK Cell Interplay Key to Regression of MHC Class Ilow Tumors upon TLR7/8 Agonist Therapy. Cancer Immunology Research, 2017, 5, 642-653.	3.4	37
62	Lipophilic Muramyl Dipeptide–Antigen Conjugates as Immunostimulating Agents. ChemMedChem, 2016, 11, 190-198.	3.2	19
63	Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. Nanoscale, 2016, 8, 19592-19604.	5.6	35
64	The Optimization of Bioorthogonal Epitope Ligation within MHC-I Complexes. ACS Chemical Biology, 2016, 11, 3172-3178.	3.4	9
65	Synthesis and evaluation of fluorescent Pam3Cys peptide conjugates. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3641-3645.	2.2	12
66	Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials, 2016, 83, 308-320.	11.4	107
67	Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. Journal of Controlled Release, 2016, 226, 98-106.	9.9	82
68	Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews Cancer, 2016, 16, 219-233.	28.4	580
69	Combination of Photodynamic Therapy and Specific Immunotherapy Efficiently Eradicates Established Tumors. Clinical Cancer Research, 2016, 22, 1459-1468.	7. O	90
70	TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. Journal of Clinical Investigation, 2016, 126, 784-794.	8.2	60
71	A phase I study in patients with a human papillomavirus type 16 positive oropharyngeal tumor treated with second generation synthetic long peptide vaccine conjugated to a defined adjuvant Journal of Clinical Oncology, 2016, 34, TPS3113-TPS3113.	1.6	9
72	TLR2 ligand-synthetic long peptide conjugates effectively stimulate tumor-draining lymph node T cells of cervical cancer patients. Oncotarget, 2016, 7, 67087-67100.	1.8	43

#	Article	IF	CITATIONS
73	Cationic Nanogels: Reduction-Sensitive Dextran Nanogels Aimed for Intracellular Delivery of Antigens (Adv. Funct. Mater. 20/2015). Advanced Functional Materials, 2015, 25, 2992-2992.	14.9	1
74	Therapeutic cancer vaccines. Journal of Clinical Investigation, 2015, 125, 3401-3412.	8.2	640
75	Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials, 2015, 61, 33-40.	11.4	89
76	Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. Journal of Controlled Release, 2015, 203, 16-22.	9.9	87
77	The Translocon Protein Sec61 Mediates Antigen Transport from Endosomes in the Cytosol for Cross-Presentation to CD8+ T Cells. Immunity, 2015, 42, 850-863.	14.3	136
78	Vaccine-Induced Tumor Necrosis Factor–Producing T Cells Synergize with Cisplatin to Promote Tumor Cell Death. Clinical Cancer Research, 2015, 21, 781-794.	7.0	81
79	Reductionâ€6ensitive Dextran Nanogels Aimed for Intracellular Delivery of Antigens. Advanced Functional Materials, 2015, 25, 2993-3003.	14.9	77
80	CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials, 2015, 40, 88-97.	11.4	235
81	Cationic Liposomes Loaded with a Synthetic Long Peptide and Poly(I:C): a Defined Adjuvanted Vaccine for Induction of Antigen-Specific T Cell Cytotoxicity. AAPS Journal, 2015, 17, 216-226.	4.4	77
82	Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: InÂvivo tracking and evaluation of antigen-specific CD8 + T cell immune response. Biomaterials, 2015, 37, 469-477.	11.4	64
83	Particulate Systems Based on Poly(Lactic-co-Glycolic)Acid (pLGA) for Immunotherapy of Cancer. Current Pharmaceutical Design, 2015, 21, 4201-4216.	1.9	19
84	The viral context instructs the redundancy of costimulatory pathways in driving CD8+ T cell expansion. ELife, 2015, 4, .	6.0	48
85	FcRγ-Chain ITAM Signaling Is Critically Required for Cross-Presentation of Soluble Antibody–Antigen Complexes by Dendritic Cells. Journal of Immunology, 2014, 193, 5506-5514.	0.8	28
86	Two in one: improving synthetic long peptide vaccines by combining antigen and adjuvant in one molecule. Oncolmmunology, 2014, 3, e947892.	4.6	16
87	Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer. Vaccine, 2014, 32, 1654-1660.	3.8	22
88	Dominant contribution of the proteasome and metalloproteinases to TAP-independent MHC-I peptide repertoire. Molecular Immunology, 2014, 62, 129-136.	2.2	12
89	Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response: A comparative study. Journal of Controlled Release, 2014, 192, 209-218.	9.9	187
90	Efficient Induction of Antitumor Immunity by Synthetic Toll-like Receptor Ligand–Peptide Conjugates. Cancer Immunology Research, 2014, 2, 756-764.	3.4	83

#	Article	IF	Citations
91	<i>N-Tetradecylcarbamyl Lipopeptides as Novel Agonists for Toll-like Receptor 2. Journal of Medicinal Chemistry, 2014, 57, 6873-6878.	6.4	31
92	Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 310-315.	4.3	30
93	lgG-Mediated Anaphylaxis to a Synthetic Long Peptide Vaccine Containing a B Cell Epitope Can Be Avoided by Slow-Release Formulation. Journal of Immunology, 2014, 192, 5813-5820.	0.8	14
94	Enhanced Cross-Presentation and Improved CD8+ T Cell Responses after Mannosylation of Synthetic Long Peptides in Mice. PLoS ONE, 2014, 9, e103755.	2.5	27
95	Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and Tâ€cell activation. European Journal of Immunology, 2013, 43, 2554-2565.	2.9	157
96	Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunology, Immunotherapy, 2013, 62, 1161-1173.	4.2	22
97	Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Seminars in Immunology, 2013, 25, 182-190.	5.6	44
98	Controlled Local Delivery of CTLA-4 Blocking Antibody Induces CD8+ T-Cell–Dependent Tumor Eradication and Decreases Risk of Toxic Side Effects. Clinical Cancer Research, 2013, 19, 5381-5389.	7.0	172
99	New Role of Signal Peptide Peptidase To Liberate C-Terminal Peptides for MHC Class I Presentation. Journal of Immunology, 2013, 191, 4020-4028.	0.8	35
100	Local immunomodulation for cancer therapy: Providing treatment where needed. Oncolmmunology, 2013, 2, e26493.	4.6	24
101	Vaccine-Induced Effector-Memory CD8+ T Cell Responses Predict Therapeutic Efficacy against Tumors. Journal of Immunology, 2012, 189, 3397-3403.	0.8	83
102	FcÎ ³ Receptor IIb Strongly Regulates FcÎ ³ Receptor-Facilitated T Cell Activation by Dendritic Cells. Journal of Immunology, 2012, 189, 92-101.	0.8	56
103	The Efficiency of Human Cytomegalovirus pp65495–503CD8+T Cell Epitope Generation Is Determined by the Balanced Activities of Cytosolic and Endoplasmic Reticulum-Resident Peptidases. Journal of Immunology, 2012, 189, 529-538.	0.8	22
104	TLR Ligand–Peptide Conjugate Vaccines. Advances in Immunology, 2012, 114, 177-201.	2.2	71
105	Circulating specific antibodies enhance systemic crossâ€priming by delivery of complexed antigen to dendritic cells in vivo. European Journal of Immunology, 2012, 42, 598-606.	2.9	39
106	Intraendosomal flow cytometry: A novel approach to analyze the protein composition of antigenâ€loaded endosomes. European Journal of Immunology, 2012, 42, 2187-2190.	2.9	9
107	Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. Journal of Autoimmunity, 2011, 37, 151-159.	6.5	66
108	Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors. PLoS ONE, 2011, 6, e16819.	2.5	42

#	Article	IF	Citations
109	Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nature Immunology, 2011, 12, 45-53.	14.5	94
110	The Inhibiting Fc Receptor for IgG, Fc \hat{I}^3 RIIB, Is a Modifier of Autoimmune Susceptibility. Journal of Immunology, 2011, 187, 1304-1313.	0.8	103
111	Evaluation of the high-pressure extrusion technique as a method for sizing plasmid DNA-containing cationic liposomes. Journal of Liposome Research, 2011, 21, 286-295.	3.3	4
112	Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6730-6735.	7.1	132
113	Steric Hindrance and Fast Dissociation Explain the Lack of Immunogenicity of the Minor Histocompatibility HA-1Arg Null Allele. Journal of Immunology, 2009, 182, 4809-4816.	0.8	28
114	DCâ€induced CD8 ⁺ Tâ€cell response is inhibited by MHC class Ilâ€dependent DX5 ⁺ CD4 ⁺ Treg. European Journal of Immunology, 2009, 39, 1765-1773.	2.9	9
115	Receptorâ€Mediated Targeting of Cathepsins in Professional Antigen Presenting Cells. Angewandte Chemie - International Edition, 2009, 48, 1629-1632.	13.8	35
116	MHC II in Dendritic Cells is Targeted to Lysosomes or T Cellâ€Induced Exosomes Via Distinct Multivesicular Body Pathways. Traffic, 2009, 10, 1528-1542.	2.7	347
117	2-Azidoalkoxy-7-hydro-8-oxoadenine derivatives as TLR7 agonists inducing dendritic cell maturation. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2249-2251.	2.2	22
118	Effective CD8+ T cell priming and tumor protection by enterotoxin B subunit-conjugated peptides targeted to dendritic cells. Vaccine, 2009, 27, 5252-5258.	3.8	11
119	Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells. Molecular Immunology, 2009, 46, 1084-1091.	2.2	58
120	CTLs are targeted to kill \hat{l}^2 cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2008, 118, 3390-402.	8.2	315
121	A Novel Role of Complement Factor C1q in Augmenting the Presentation of Antigen Captured in Immune Complexes to CD8+T Lymphocytes. Journal of Immunology, 2007, 178, 7581-7586.	0.8	29
122	Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-like Receptor Ligand-Peptide Conjugates in Dendritic Cells. Journal of Biological Chemistry, 2007, 282, 21145-21159.	3.4	157
123	Ins and Outs of Dendritic Cells. International Archives of Allergy and Immunology, 2006, 140, 53-72.	2.1	83
124	Murine Fc receptors for IgG are redundant in facilitating presentation of immune complex derived antigen to CD8+ T cells in vivo. Molecular Immunology, 2006, 43, 2045-2050.	2.2	32
125	Dendritic cells, but not macrophages or B cells, activate major histocompatibility complex class II-restricted CD4+T cells upon immune-complex uptake in vivo. Immunology, 2006, 119, 499-506.	4.4	51
126	Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nature Medicine, 2006, 12, 417-424.	30.7	142

#	Article	IF	Citations
127	Synthesis of 2-alkoxy-8-hydroxyadenylpeptides: Towards synthetic epitope-based vaccines. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3258-3261.	2.2	23
128	Cd8 Tâ€cell recognition of human 5T4 oncofetal antigen. International Journal of Cancer, 2006, 119, 1638-1647.	5.1	26
129	Immune Complex-Loaded Dendritic Cells Are Superior to Soluble Immune Complexes as Antitumor Vaccine. Journal of Immunology, 2006, 176, 4573-4580.	0.8	104
130	Gamma Irradiation or CD4+-T-Cell Depletion Causes Reactivation of Latent Salmonella enterica Serovar Typhimurium Infection in C3H/HeN Mice. Infection and Immunity, 2005, 73, 2857-2862.	2.2	15
131	Autoreactive CD8 T cells associated with \hat{A} cell destruction in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18425-18430.	7.1	252
132	Differential Expression Regulation of the \hat{l}_{\pm} and \hat{l}_{\pm}^2 Subunits of the PA28 Proteasome Activator in Mature Dendritic Cells. Journal of Immunology, 2005, 174, 7815-7822.	0.8	60
133	Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Current Opinion in Immunology, 2004, 16, 76-81.	5.5	372
134	New chelation strategy allows for quick and clean 99mTc-labeling of synthetic peptides. Nuclear Medicine and Biology, 2004, 31, 815-820.	0.6	17
135	Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells1. Transplantation, 2003, 76, 1608-1615.	1.0	71
136	The minor histocompatibility antigen HA-3 arises from differential proteasome–mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood, 2003, 102, 621-629.	1.4	118
137	Identification of a Novel HLA-B60-Restricted T Cell Epitope of the Minor Histocompatibility Antigen HA-1 Locus. Journal of Immunology, 2002, 169, 3131-3136.	0.8	71
138	Differential Kinetics of Antigen-Specific CD4+ and CD8+ T Cell Responses in the Regression of Retrovirus-Induced Sarcomas. Journal of Immunology, 2002, 169, 3191-3199.	0.8	82
139	Antigen-Antibody Immune Complexes Empower Dendritic Cells to Efficiently Prime Specific CD8+ CTL Responses In Vivo. Journal of Immunology, 2002, 168, 2240-2246.	0.8	223
140	Bi-directional allelic recognition of the human minor histocompatibility antigen HB-1 by cytotoxic T lymphocytes. European Journal of Immunology, 2002, 32, 2748-2758.	2.9	55
141	Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunological Reviews, 2002, 188, 177-182.	6.0	94
142	Antitumor efficacy of wild-type p53-specific CD4(+) T-helper cells. Cancer Research, 2002, 62, 6187-93.	0.9	46
143	Expression of the Serpin Serine Protease Inhibitor 6 Protects Dendritic Cells from Cytotoxic T Lymphocyte–Induced Apoptosis. Journal of Experimental Medicine, 2001, 194, 657-668.	8.5	187
144	The identification of a common pathogen-specific HLA class l A*0201-restricted cytotoxic T cell epitope encoded within the heat shock protein 65. European Journal of Immunology, 2001, 31, 3602-3611.	2.9	26

#	Article	IF	Citations
145	Efficient Identification of Novel Hla-A*0201–Presented Cytotoxic T Lymphocyte Epitopes in the Widely Expressed Tumor Antigen Prame by Proteasome-Mediated Digestion Analysis. Journal of Experimental Medicine, 2001, 193, 73-88.	8.5	236
146	Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. Journal of Cell Biology, 2001, 155, 53-64.	5.2	256
147	Design and evaluation of antigen-specific vaccination strategies against cancer. Current Opinion in Immunology, 2000, 12, 576-582.	5.5	91
148	Identification of a Novel Tumor-Specific CTL Epitope Presented by RMA, EL-4, and MBL-2 Lymphomas Reveals Their Common Origin. Journal of Immunology, 2000, 165, 869-877.	0.8	43
149	Immature Dendritic Cells Acquire Cd8+Cytotoxic T Lymphocyte Priming Capacity upon Activation by T Helper Cell–Independent or–Dependent Stimuli. Journal of Experimental Medicine, 2000, 192, 145-150.	8.5	173
150	Abrogation of CTL Epitope Processing by Single Amino Acid Substitution Flanking the C-Terminal Proteasome Cleavage Site. Journal of Immunology, 2000, 164, 1898-1905.	0.8	88
151	Differential Influence on Cytotoxic T Lymphocyte Epitope Presentation by Controlled Expression of Either Proteasome Immunosubunits or Pa28. Journal of Experimental Medicine, 2000, 192, 483-494.	8.5	100
152	CD4 T Cells and Their Role in Antitumor Immune Responses. Journal of Experimental Medicine, 1999, 189, 753-756.	8.5	460
153	Get into the groove! Targeting antigens to MHC class II. Immunological Reviews, 1999, 172, 87-96.	6.0	51
154	Specific T Helper Cell Requirement for Optimal Induction of Cytotoxic T Lymphocytes against Major Histocompatibility Complex Class II Negative Tumors. Journal of Experimental Medicine, 1998, 187, 693-702.	8.5	535
155	A Single Residue Exchange Within a Viral CTL Epitope Alters Proteasome-Mediated Degradation Resulting in Lack of Antigen Presentation. Immunity, 1996, 5, 115-124.	14.3	180
156	Immunotherapy of cancer by peptide-based vaccines for the induction of tumor-specific T cell immunity. Immunotechnology: an International Journal of Immunological Engineering, 1996, 2, 241-251.	2.4	13
157	Adenosine–deaminase–deficient mice die perinatally and exhibit liver–cell degeneration, atelectasis and small intestinal cell death. Nature Genetics, 1995, 10, 279-287.	21.4	116
158	Competition inhibition of cytotoxic T-lymphocyte (CTL) lysis, a more sensitive method to identify candidate CTL epitopes than induction of antibody-detected MHC class I stabilization. Immunology Letters, 1995, 47, 1-8.	2.5	19
159	Cloning and expression of murine CD27: comparison with 4-1BB, another lymphocyte-specific member of the nerve growth factor receptor family. European Journal of Immunology, 1993, 23, 943-950.	2.9	57
160	Functional characterization of a novel anti-B7 monoclonal antibody. European Journal of Immunology, 1992, 22, 3071-3075.	2.9	56
161	T cell depletion in transgenic mice carrying a mutant gene for TCR-β. Nature, 1989, 341, 742-746.	27.8	77