David B Corry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2264608/publications.pdf

Version: 2024-02-01

50276 42399 9,189 143 46 92 citations h-index g-index papers 145 145 145 11857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	STAT6 Blockade Abrogates Aspergillus-Induced Eosinophilic Chronic Rhinosinusitis and Asthma, A Model of Unified Airway Disease. Frontiers in Immunology, 2022, 13, 818017.	4.8	5
2	Reduced pro-inflammatory dendritic cell phenotypes are a potential indicator of successful peanut oral immunotherapy. PLoS ONE, 2022, 17, e0264674.	2.5	3
3	Meta-analysis of host transcriptional responses to SARS-CoV-2 infection reveals their manifestation in human tumors. Scientific Reports, 2021, 11, 2459.	3.3	17
4	Esomeprazole enhances the effect of ionizing radiation to improve tumor control. Oncotarget, 2021, 12, 1339-1353.	1.8	10
5	The immune response to airway mycosis. Current Opinion in Microbiology, 2021, 62, 45-50.	5.1	7
6	Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity, 2021, 54, 2595-2610.e7.	14.3	47
7	Computer-Assisted Analysis of Oral Antifungal Therapy in Chronic Rhinosinusitis with Airway Mycosis: a Retrospective Cohort Analysis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0169721.	3.2	1
8	Novel acute hypersensitivity pneumonitis model induced by airway mycosis and high dose lipopolysaccharide. Respiratory Research, 2021, 22, 263.	3.6	2
9	Mechanisms of allergy and adult asthma. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 36-42.	2.3	14
10	Host Immunity and Inflammation to Pulmonary Helminth Infections. Frontiers in Immunology, 2020, 11, 594520.	4.8	26
11	Coronavirus vaccine-associated lung immunopathology-what is the significance?. Microbes and Infection, 2020, 22, 403-404.	1.9	15
12	An evaluation of cytokine and cellular immune responses to heterologous prime-boost vaccination with influenza A/H7N7-A/H7N9 inactivated vaccine. Human Vaccines and Immunotherapeutics, 2020, 16, 3138-3145.	3.3	4
13	Airway Mycosis and the Regulation of Type 2 Immunity. Journal of Fungi (Basel, Switzerland), 2020, 6, 74.	3.5	3
14	COVID-19 vaccines: neutralizing antibodies and the alum advantage. Nature Reviews Immunology, 2020, 20, 399-400.	22.7	74
15	COVID-19 vaccine design: the Janus face of immune enhancement. Nature Reviews Immunology, 2020, 20, 347-348.	22.7	155
16	The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microbes and Infection, 2020, 22, 165-167.	1.9	103
17	Immunological Mechanisms of Airway Diseases and Pathways to Therapy. , 2019, , 571-584.e1.		3
18	Airway mycosis in allergic airway disease. Advances in Immunology, 2019, 142, 85-140.	2.2	29

#	Article	IF	Citations
19	Cough and Allergic Diseases. , 2019, , 469-478.		О
20	A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. Journal of Immunology, 2019, 203, 349-359.	0.8	6
21	Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. Journal of Biological Chemistry, 2019, 294, 8834-8847.	3.4	26
22	Elastinâ€Specific Autoimmunity in Smokers With Thoracic Aortic Aneurysm and Dissection is Independent of Chronic Obstructive Pulmonary Disease. Journal of the American Heart Association, 2019, 8, e011671.	3.7	22
23	<i>Aspergillus fumigatus</i> induction of ILâ€33 expression in chronic rhinosinusitis is PAR2â€dependent. Laryngoscope, 2019, 129, 2230-2235.	2.0	17
24	Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nature Immunology, 2019, 20, 724-735.	14.5	297
25	Cigarette Smoke Induces Intestinal Inflammation via a Th17 Cell-Neutrophil Axis. Frontiers in Immunology, 2019, 10, 75.	4.8	33
26	Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses. Frontiers in Oncology, 2019, 9, 1384.	2.8	7
27	Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nature Communications, 2019, 10, 58.	12.8	78
28	Cigarette smoke–induced reduction of C1q promotes emphysema. JCI Insight, 2019, 4, .	5.0	23
29	Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. Journal of Clinical Investigation, 2019, 129, 4290-4304.	8.2	264
30	IL17A Regulates Tumor Latency and Metastasis in Lung Adeno and Squamous SQ.2b and AD.1 Cancer. Cancer Immunology Research, 2018, 6, 645-657.	3.4	31
31	Advances and Evolving Concepts in Allergic Asthma. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 064-081.	2.1	14
32	Benefits of antifungal therapy in asthma patients with airway mycosis: A retrospective cohort analysis. Immunity, Inflammation and Disease, 2018, 6, 264-275.	2.7	19
33	Matrix remodeling in chronic lung diseases. Matrix Biology, 2018, 73, 52-63.	3.6	37
34	Fibrinogen cleavage products and Toll-like receptor 4 promote the generation of programmed cell death 1 ligand 2–positive dendritic cells in allergic asthma. Journal of Allergy and Clinical Immunology, 2018, 142, 530-541.e6.	2.9	20
35	Fungi in Mucoobstructive Airway Diseases. Annals of the American Thoracic Society, 2018, 15, S198-S204.	3.2	11
36	<i>Ascaris</i> Larval Infection and Lung Invasion Directly Induce Severe Allergic Airway Disease in Mice. Infection and Immunity, 2018, 86, .	2.2	30

#	Article	IF	Citations
37	Cough and Allergic Diseases. , 2018, , 1-10.		0
38	A Fungal Protease Model to Interrogate Allergic Lung Immunity. Methods in Molecular Biology, 2018, 1799, 1-9.	0.9	2
39	Small molecule targeting of the STAT5/6 Src homology 2 (SH2) domains to inhibit allergic airway disease. Journal of Biological Chemistry, 2018, 293, 10026-10040.	3.4	16
40	Chemosensitizers As Therapeutic Adjuncts in Allergic Airway Disease. Journal of Allergy and Clinical Immunology, 2017, 139, AB7.	2.9	0
41	Interleukin 37 promotes angiogenesis through TGF-β signaling. Scientific Reports, 2017, 7, 6113.	3.3	21
42	AIMp1 Potentiates TH1 Polarization and Is Critical for Effective Antitumor and Antiviral Immunity. Frontiers in Immunology, 2017, 8, 1801.	4.8	28
43	Allergen-encoded signals that control allergic responses. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 51-58.	2.3	4
44	Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Scientific Reports, 2016, 6, 33808.	3.3	32
45	Cell mediated immune responses following revaccination with an influenza A/H5N1 vaccine. Vaccine, 2016, 34, 547-554.	3.8	4
46	IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells., 2015, 56, 4186.		84
47	Long-Acting Beta Agonists Enhance Allergic Airway Disease. PLoS ONE, 2015, 10, e0142212.	2.5	13
48	Porous Silicon Microparticle Potentiates Anti-Tumor Immunity by Enhancing Cross-Presentation and Inducing Type I Interferon Response. Cell Reports, 2015, 11, 957-966.	6.4	90
49	Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 6 (STAT6) with Cell-Permeable, Phosphatase-Stable Phosphopeptide Mimics Potently Inhibits Tyr641 Phosphorylation and Transcriptional Activity. Journal of Medicinal Chemistry, 2015, 58, 8970-8984.	6.4	32
50	IL-37 Is a Novel Proangiogenic Factor of Developmental and Pathological Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2638-2646.	2.4	35
51	The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote TH17 cell–dependent emphysema. Nature Immunology, 2015, 16, 1185-1194.	14.5	91
52	Clinical and Immunological Factors in Emphysema Progression. Five-Year Prospective Longitudinal Exacerbation Study of Chronic Obstructive Pulmonary Disease (LES-COPD). American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1171-1178.	5.6	41
53	Leukotriene enhanced allergic lung inflammation through induction of chemokine production. Clinical and Experimental Medicine, 2015, 15, 233-244.	3.6	9
54	Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema. ELife, 2015, 4, e09623.	6.0	59

#	Article	IF	CITATIONS
55	Loss of Peripheral Tolerance in Emphysema. Phenotypes, Exacerbations, and Disease Progression. Annals of the American Thoracic Society, 2015, 12 Suppl 2, S164-8.	3.2	6
56	Airway Fibrinogenolysis and the Initiation of Allergic Inflammation. Annals of the American Thoracic Society, 2014, 11, S277-S283.	3.2	17
57	Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nature Medicine, 2014, 20, 503-510.	30.7	173
58	Blocking KV1.3 Channels Inhibits Th2 Lymphocyte Function and Treats a Rat Model of Asthma. Journal of Biological Chemistry, 2014, 289, 12623-12632.	3.4	58
59	Airway surface mycosis in chronic TH2-associated airway disease. Journal of Allergy and Clinical Immunology, 2014, 134, 325-331.e9.	2.9	70
60	CD11a polymorphisms regulate TH2 cell homing and TH2-related disease. Journal of Allergy and Clinical Immunology, 2014, 133, 189-197.e8.	2.9	9
61	Agonistic induction of PPARγ reverses cigarette smoke–induced emphysema. Journal of Clinical Investigation, 2014, 124, 1371-1381.	8.2	64
62	Tracheobronchial mycosis in a retrospective case-series study of five status asthmaticus patients. Clinical Immunology, 2013, 146, 77-83.	3.2	22
63	IL-33–Responsive Innate Lymphoid Cells Are an Important Source of IL-13 in Chronic Rhinosinusitis with Nasal Polyps. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 432-439.	5.6	240
64	Th2 Mediated Airway Diseases Strongly Linked to Fungal T Cell Memory. Journal of Allergy and Clinical Immunology, 2013, 131, AB203.	2.9	1
65	The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nature Immunology, 2013, 14, 732-740.	14.5	117
66	Profiling of T helper cell-derived small RNAs reveals unique antisense transcripts and differential association of miRNAs with argonaute proteins 1 and 2. Nucleic Acids Research, 2013, 41, 1164-1177.	14.5	20
67	Cleavage of Fibrinogen by Proteinases Elicits Allergic Responses Through Toll-Like Receptor 4. Science, 2013, 341, 792-796.	12.6	194
68	F-Actin Plaque Formation as a Transitional Membrane Microstructure Which Plays a Crucial Role in Cell-cell Reconnections of Rat Hepatic Cells After Isolation. Journal of Interdisciplinary Histopathology, 2013, 1, 50.	0.2	4
69	Immunological mechanisms of airway diseases and pathways to therapy., 2013,, 491-505.		2
70	Autoreactive T Cells in Human Smokers is Predictive of Clinical Outcome. Frontiers in Immunology, 2012, 3, 267.	4.8	29
71	Cigarette Smoke Induction of Osteopontin (SPP1) Mediates T _H 17 Inflammation in Human and Experimental Emphysema. Science Translational Medicine, 2012, 4, 117ra9.	12.4	145
72	Autoimmunity in chronic obstructive pulmonary disease: clinical and experimental evidence. Expert Review of Clinical Immunology, 2012, 8, 285-292.	3.0	77

#	Article	IF	CITATIONS
73	Overexpression of Methyl-CpG Binding Protein 2 Impairs T < sub>H < /sub> 1 Responses. Science Translational Medicine, 2012, 4, 163ra158.	12.4	52
74	High prevalence of asthma in HIV-infected adults: New insights. Journal of Allergy and Clinical Immunology, 2012, 129, 715-716.	2.9	3
75	Alternaria-Induced Release of IL-18 from Damaged Airway Epithelial Cells: An NF-κB Dependent Mechanism of Th2 Differentiation?. PLoS ONE, 2012, 7, e30280.	2.5	30
76	Tracheobronchial Mycoses in Status Asthmaticu. Chest, 2012, 142, 701A.	0.8	0
77	Interleukin 13 and the evolution of asthma therapy. American Journal of Clinical and Experimental Immunology, 2012, 1, 20-27.	0.2	21
78	Fungi Linking the Pathophysiology of Chronic Rhinosinusitis with Nasal Polyps and Allergic Asthma. Immunological Investigations, 2011, 40, 767-785.	2.0	16
79	Proteinases as molecular adjuvants in allergic airway disease. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1059-1065.	2.4	26
80	Seeking common pathophysiology in asthma, atopy and sinusitis. Trends in Immunology, 2011, 32, 43-49.	6.8	31
81	Cross-Sectional Analysis of the Utility of Pulmonary Function Tests in Predicting Emphysema in Ever-Smokers. International Journal of Environmental Research and Public Health, 2011, 8, 1324-1340.	2.6	28
82	Three-dimensional spheroid cultures of A549 and HepG2 cells exhibit different lipopolysaccharide (LPS) receptor expression and LPS-induced cytokine response compared with monolayer cultures. Innate Immunity, 2011, 17, 245-255.	2.4	28
83	Necessary and Sufficient Role for T Helper Cells To Prevent Fungal Dissemination in Allergic Lung Disease. Infection and Immunity, 2011, 79, 4459-4471.	2.2	41
84	Dual Protective Mechanisms of Matrix Metalloproteinases 2 and 9 in Immune Defense against <i>Streptococcus pneumoniae</i> Journal of Immunology, 2011, 186, 6427-6436.	0.8	36
85	Fungal Chitin from Asthma-Associated Home Environments Induces Eosinophilic Lung Infiltration. Journal of Immunology, 2011, 187, 2261-2267.	0.8	114
86	Respiratory tract allergic disease and atopy: experimental evidence for a fungal infectious etiology. Medical Mycology, 2011, 49, S158-S163.	0.7	25
87	Th2 lymphocyte potassium channels in asthma. FASEB Journal, 2011, 25, 945.7.	0.5	0
88	Proinflammatory Role for let-7 MicroRNAS in Experimental Asthma. Journal of Biological Chemistry, 2010, 285, 30139-30149.	3.4	222
89	Response to Kumar et al.: Proinflammatory Role of let-7 miRNAs in Experimental Asthma?. Journal of Biological Chemistry, 2010, 285, le20.	3.4	1
90	Human rhinovirus proteinase 2A induces TH1 and TH2 immunity in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2010, 125, 1369-1378.e2.	2.9	71

#	Article	IF	CITATIONS
91	A Reversible, Non-Invasive Method for Airway Resistance Measurements and Bronchoalveolar Lavage Fluid Sampling in Mice. Journal of Visualized Experiments, 2010, , .	0.3	9
92	Lung Myeloid Dendritic Cells Coordinately Induce T _H 1 and T _H 17 Responses in Human Emphysema. Science Translational Medicine, 2009, 1, 4ra10.	12.4	124
93	Distinct Roles for MyD88 and Toll-Like Receptor 2 during <i>Leishmania braziliensis</i> Infection in Mice. Infection and Immunity, 2009, 77, 2948-2956.	2.2	92
94	Smoking Gun. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1166-1167.	5.6	13
95	At Last, an Immune Organ We Can Call Our Own?. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 525-527.	5.6	5
96	Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nature Immunology, 2009, 10, 496-503.	14.5	104
97	Extravascular inflammation does not increase atherosclerosis in apoE-deficient mice. Biochemical and Biophysical Research Communications, 2009, 384, 93-99.	2.1	9
98	Toward a comprehensive understanding of allergic lung disease. Transactions of the American Clinical and Climatological Association, 2009, 120, 33-48.	0.5	11
99	Discovery of novel markers in allergic lung inflammation through proteomic-based technologies. Expert Review of Proteomics, 2008, 5, 9-12.	3.0	7
100	Developmental Control of Integrin Expression Regulates Th2 Effector Homing. Journal of Immunology, 2008, 180, 4656-4667.	0.8	18
101	Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/ cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Research, 2008, 18, 1571-1581.	5.5	87
102	Role of Matrixâ€metalloproteaseâ€7 in a Model of Experimental Asthma. FASEB Journal, 2008, 22, 671.3.	0.5	1
103	Aspergillus niger conidia induces asthma in mice FASEB Journal, 2008, 22, 671.14.	0.5	0
104	Interleukin 25 promotes the initiation of proallergic type 2 responses. Journal of Experimental Medicine, 2007, 204, 1509-1517.	8.5	493
105	A new mechanism regulating the initiation of allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2007, 120, 334-342.	2.9	65
106	A new link to airway obstruction in asthma. Nature Medicine, 2007, 13, 777-778.	30.7	10
107	Antielastin autoimmunity in tobacco smoking–induced emphysema. Nature Medicine, 2007, 13, 567-569.	30.7	487
108	MMP2 and MMP9 mediate innate immune response to Pneumococcal pneumonia. FASEB Journal, 2007, 21, A183.	0.5	0

#	Article	IF	Citations
109	7. Control of allergic airway inflammation through immunomodulation. Journal of Allergy and Clinical Immunology, 2006, 117, S461-S464.	2.9	16
110	Promise and Pitfalls in Animal-Based Asthma Research: Building a Better Mousetrap. Immunologic Research, 2006, 35, 279-294.	2.9	32
111	A general method for bead-enhanced quantitation by flow cytometry. Journal of Immunological Methods, 2006, 317, 45-55.	1.4	42
112	Eotaxin and Obesity. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 256-261.	3.6	109
113	Proteomic Identification of In Vivo Substrates for Matrix Metalloproteinases 2 and 9 Reveals a Mechanism for Resolution of Inflammation. Journal of Immunology, 2006, 177, 7312-7321.	0.8	158
114	Interactions Between Leukotriene C4 and Interleukin 13 Signaling Pathways in a Mouse Model of Airway Disease. Archives of Pathology and Laboratory Medicine, 2006, 130, 440-446.	2.5	13
115	Asthma: Pathology and Pathophysiology. Archives of Pathology and Laboratory Medicine, 2006, 130, 447-451.	2.5	78
116	The Future of Asthma Therapy: Integrating Clinical and Experimental Studies. Immunologic Research, 2005, 33, 035-052.	2.9	6
117	Resolving a case of split personality. Nature Immunology, 2005, 6, 432-434.	14.5	1
118	Endogenous Attenuation of Allergic Lung Inflammation by Syndecan-1. Journal of Immunology, 2005, 174, 5758-5765.	0.8	97
119	Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB Journal, 2004, 18, 995-997.	0.5	185
120	Airway glycoprotein secretion parallels production and predicts airway obstruction in pulmonary allergyâ ⁺ t. Journal of Allergy and Clinical Immunology, 2004, 113, 72-78.	2.9	15
121	The Importance of Bronchoscope Reprocessing Guidelines. Chest, 2004, 126, 1001-1002.	0.8	12
122	An Immune Basis for Lung Parenchymal Destruction in Chronic Obstructive Pulmonary Disease and Emphysema. PLoS Medicine, 2004, 1, e8.	8.4	400
123	Differential requirement for CD18 in T-helper effector homing. Nature Medicine, 2003, 9, 1281-1286.	30.7	40
124	16. Immunologic lung disease. Journal of Allergy and Clinical Immunology, 2003, 111, S613-S623.	2.9	19
125	Mechanical stretch activates nuclear factorâ€kappaB, activator proteinâ€1, and mitogenâ€activated protein kinases in lung parenchyma: implications in asthma. FASEB Journal, 2003, 17, 1800-1811.	0.5	89
126	Frequency dependence of respiratory system mechanics during induced constriction in a murine model of asthma. Journal of Applied Physiology, 2003, 94, 245-252.	2.5	19

#	Article	IF	CITATIONS
127	Absence of the Complement Anaphylatoxin C3a Receptor Suppresses Th2 Effector Functions in a Murine Model of Pulmonary Allergy. Journal of Immunology, 2002, 169, 5926-5933.	0.8	162
128	The Th2 Lymphocyte Products IL-4 and IL-13 Rapidly Induce Airway Hyperresponsiveness Through Direct Effects on Resident Airway Cells. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 202-208.	2.9	209
129	Î ³ -Glutamyl Leukotrienase, a Novel Endothelial Membrane Protein, Is Specifically Responsible for Leukotriene D4 Formation in Vivo. American Journal of Pathology, 2002, 161, 481-490.	3.8	53
130	Biology and Therapeutic Potential of the Interleukin-4/Interleukin-13 Signaling Pathway in Asthma. Treatments in Respiratory Medicine, 2002, $1, 185-193$.	1.2	45
131	A Protease-Activated Pathway Underlying Th Cell Type 2 Activation and Allergic Lung Disease. Journal of Immunology, 2002, 169, 5904-5911.	0.8	292
132	Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nature Immunology, 2002, 3, 347-353.	14.5	244
133	Emerging immune targets for the therapy of allergic asthma. Nature Reviews Drug Discovery, 2002, 1, 55-64.	46.4	46
134	Gene therapy of mucus hypersecretion in experimental asthma. Chest, 2002, 121, 90S-91S.	0.8	2
135	Cutting Edge: The Absence of C3 Demonstrates a Role for Complement in Th2 Effector Functions in a Murine Model of Pulmonary Allergy. Journal of Immunology, 2001, 167, 4141-4145.	0.8	109
136	Airway inflammation and remodeling in asthma. Current Opinion in Pulmonary Medicine, 2000, 6, 15-20.	2.6	164
137	Baseline Airway Hyperreactivity in A/J Mice Is not Mediated by Cells of the Adaptive Immune System. Journal of Immunology, 2000, 164, 4933-4940.	0.8	17
138	IL-13 in allergy: home at last. Current Opinion in Immunology, 1999, 11, 610-614.	5.5	98
139	ANIMAL MODELS OF ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS. Immunology and Allergy Clinics of North America, 1998, 18, 661-679.	1.9	6
140	Requirements for Allergen-Induced Airway Hyperreactivity in T and B Cell-Deficient Mice. Molecular Medicine, 1998, 4, 344-355.	4.4	225
141	Interleukin-10 Is a Natural Suppressor of Cytokine Production and Inflammation in a Murine Model of Allergic Bronchopulmonary Aspergillosis. Journal of Experimental Medicine, 1997, 185, 1089-1100.	8.5	302
142	ASSESSMENT OF OPERATIVE RISK FOR PATIENTS WITH ADVANCED LUNG DISEASE. Clinics in Chest Medicine, 1997, 18, 483-494.	2.1	17
143	Constructing polycompetitor cDNAs for quantitative PCR. Journal of Immunological Methods, 1993, 165, 37-46.	1.4	307