Marcel A Holyoak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263780/publications.pdf Version: 2024-02-01

		109321	30922
106	11,150	35	102
papers	citations	h-index	g-index
111	111	111	13884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolutionary and ecological patterns of scatter―and larderâ€hoarding behaviours in rodents. Ecology Letters, 2022, 25, 1202-1214.	6.4	9
2	Host and geographic barriers shape the competition, coexistence, and extinction patterns of influenza A (H1N1) viruses. Ecology and Evolution, 2022, 12, e8732.	1.9	2
3	Hilltopping influences spatial dynamics in a patchy population of tiger moths. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	2
4	Population viability and management of the valley elderberry longhorn beetle. Biodiversity and Conservation, 2021, 30, 481-496.	2.6	1
5	Altered precipitation dynamics lead to a shift in herbivore dynamical regime. Ecology Letters, 2021, 24, 1400-1407.	6.4	9
6	Integrated assessments call for establishing a sustainable meta-population of Amur tigers in northeast Asia. Biological Conservation, 2021, 261, 109250.	4.1	16
7	Spatial conservation prioritization for the Amur tiger in Northeast China. Ecosphere, 2021, 12, e03758.	2.2	14
8	Changes in the Habitat Preference of Crested Ibis (Nipponia nippon) during a Period of Rapid Population Increase. Animals, 2021, 11, 2626.	2.3	5
9	An intercontinental comparison of insect seed predation between introduced and native oaks. Integrative Zoology, 2021, , .	2.6	3
10	Ecological thresholds and large carnivores conservation: Implications for the Amur tiger and leopard in China. Global Ecology and Conservation, 2020, 21, e00837.	2.1	8
11	Traitâ€mediated filtering drives contrasting patterns of species richness and functional diversity across montane bird assemblages. Journal of Biogeography, 2020, 47, 301-312.	3.0	19
12	Integrating Disturbance, Seasonality, Multi-Year Temporal Dynamics, and Dormancy Into the Dynamics and Conservation of Metacommunities. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	30
13	Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 2020, 7, 101067.	1.6	3
14	The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird–plant frugivory networks. Ecology Letters, 2020, 23, 1252-1262.	6.4	19
15	Trait–environment relationships differ between mixedâ€species flocking and nonflocking bird assemblages. Ecology, 2020, 101, e03124.	3.2	9
16	Non-invasive genetic monitoring for the threatened valley elderberry longhorn beetle. PLoS ONE, 2020, 15, e0227333.	2.5	8
17	Variance-Explicit Ecology:. , 2020, , 25-42.		4
18	Precipitation-dependent source–sink dynamics in a spatially-structured population of an outbreaking caterpillar. Landscape Ecology, 2019, 34, 1131-1143.	4.2	5

#	Article	IF	CITATIONS
19	Spatiotemporal distribution of seasonal bird assemblages on land-bridge islands: linking dynamic and static views of metacommunities. Avian Research, 2019, 10, .	1.2	2
20	Symposium "How to track wild animals without disturbance and subsequent bias― Integrative Zoology, 2019, 14, 2-3.	2.6	0
21	Innate preference for native prey and personality implications in captive amur tigers. Applied Animal Behaviour Science, 2019, 210, 95-102.	1.9	8
22	Ecological Indicators: Connectance and Connectivity. , 2019, , 567-574.		0
23	As temperature increases, predator attack rate is more important to survival than a smaller window of prey vulnerability. Ecology, 2018, 99, 1584-1590.	3.2	22
24	Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests. Forest Ecology and Management, 2018, 419-420, 42-50.	3.2	28
25	Do seasonal species assemblages differ in their biogeography? Evidence from the spatial structure of bird communities on landâ€bridge islands. Journal of Biogeography, 2018, 45, 473-483.	3.0	10
26	Using citizen science data in integrated population models to inform conservation. Biological Conservation, 2018, 227, 361-368.	4.1	41
27	Quantifying the effects of climate and anthropogenic change on regional species loss in China. PLoS ONE, 2018, 13, e0199735.	2.5	17
28	Land sharing and land sparing reveal social and ecological synergy in big cat conservation. Biological Conservation, 2017, 211, 142-149.	4.1	27
29	Wet years have more caterpillars: interacting roles of plant litter and predation by ants. Ecology, 2017, 98, 2370-2378.	3.2	20
30	Seed–predator satiation and Janzen–Connell effects vary with spatial scales for seed-feeding insects. Annals of Botany, 2017, 119, 109-116.	2.9	25
31	Testing predictions of movement behaviour in a hilltopping moth. Animal Behaviour, 2017, 133, 161-168.	1.9	13
32	Species coâ€occurrence and phylogenetic structure of terrestrial vertebrates at regional scales. Global Ecology and Biogeography, 2016, 25, 455-463.	5.8	17
33	Variability in plant nutrients reduces insect herbivore performance. Nature, 2016, 539, 425-427.	27.8	186
34	The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Integrative Zoology, 2016, 11, 40-59.	2.6	34
35	Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology, 2016, 31, 219-227.	4.2	336
36	Metapopulation Dynamics on Ephemeral Patches. American Naturalist, 2015, 185, 183-195.	2.1	45

#	Article	IF	CITATIONS
37	Thrice as easy to catch! Copper and temperature modulate predatorâ€prey interactions in larval dragonflies and anurans. Ecosphere, 2015, 6, 1-17.	2.2	30
38	Predation and associational refuge drive ontogenetic niche shifts in an arctiid caterpillar. Ecology, 2015, 96, 80-89.	3.2	25
39	Sea-level rise and refuge habitats for tidal marsh species: Can artificial islands save the California Ridgway's rail?. Ecological Engineering, 2015, 74, 337-344.	3.6	11
40	Combining Site Occupancy, Breeding Population Sizes and Reproductive Success to Calculate Time-Averaged Reproductive Output of Different Habitat Types: An Application to Tricolored Blackbirds. PLoS ONE, 2014, 9, e96980.	2.5	13
41	Potential Factors Affecting Survival Differ by Run-Timing and Location: Linear Mixed-Effects Models of Pacific Salmonids (Oncorhynchus spp.) in the Klamath River, California. PLoS ONE, 2014, 9, e98392.	2.5	7
42	Habitat suitability through time: using time series and habitat models to understand changes in bird density. Ecosphere, 2014, 5, 1-16.	2.2	16
43	Tidal and seasonal effects on survival rates of the endangered California clapper rail: does invasive Spartina facilitate greater survival in a dynamic environment?. Biological Invasions, 2014, 16, 1897-1914.	2.4	20
44	How invader traits interact with resident communities and resource availability to determine invasion success. Oikos, 2013, 122, 149-160.	2.7	25
45	Understanding the contribution of habitats and regional variation to longâ€ŧerm population trends in tricolored blackbirds. Ecology and Evolution, 2013, 3, 2845-2858.	1.9	14
46	Nonâ€ŧrophic effects of litter reduce ant predation and determine caterpillar survival and distribution. Oikos, 2013, 122, 1362-1370.	2.7	23
47	Localized Hotspots Drive Continental Geography of Abnormal Amphibians on U.S. Wildlife Refuges. PLoS ONE, 2013, 8, e77467.	2.5	18
48	Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California. San Francisco Estuary and Watershed Science, 2013, 11, .	0.4	12
49	The importance of host plant limitation for caterpillars of an arctiid moth (Platyprepia virginalis) varies spatially. Ecology, 2012, 93, 2216-2226.	3.2	17
50	Spatial clustering of habitat structure effects patterns of community composition and diversity. Ecology, 2012, 93, 1125-1133.	3.2	27
51	Facilitation of tiger moths by outbreaking tussock moths that share the same host plants. Journal of Animal Ecology, 2012, 81, 1095-1102.	2.8	19
52	Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology, 2011, 92, 859-870.	3.2	90
53	The growth of Ecology Letters, and scope of the journal. Ecology Letters, 2011, 14, 81-81.	6.4	0
54	Twice as easy to catch? A toxicant and a predator cue cause additive reductions in larval amphibian activity. Ecosphere, 2011, 2, art72.	2.2	16

#	Article	IF	CITATIONS
55	Effects of Connectivity and Recurrent Local Disturbances on Community Structure and Population Density in Experimental Metacommunities. PLoS ONE, 2011, 6, e19525.	2.5	78
56	The effectiveness of US mitigation and monitoring practices for the threatened Valley elderberry longhorn beetle. Journal of Insect Conservation, 2010, 14, 43-52.	1.4	6
57	Multiple stressors and the cause of amphibian abnormalities. Ecological Monographs, 2010, 80, 423-440.	5.4	25
58	Targeting journals and covering letters. Frontiers in Ecology and the Environment, 2010, 8, 161-162.	4.0	1
59	Influence of remediation in a mineâ€impacted river: metal trends over large spatial and temporal scales. Ecological Applications, 2009, 19, 1522-1535.	3.8	42
60	Understanding the Ecology of Blue Elderberry to Inform Landscape Restoration in Semiarid River Corridors. Environmental Management, 2009, 43, 28-37.	2.7	6
61	Factors controlling community structure in heterogeneous metacommunities. Journal of Animal Ecology, 2009, 78, 937-944.	2.8	30
62	The Golden Rule of Reviewing. American Naturalist, 2009, 173, E155-E158.	2.1	45
63	An Evaluation of the Effects of Soil Characteristics on Mitigation and Restoration Involving Blue Elderberry, Sambucus mexicana. Environmental Management, 2008, 42, 49-65.	2.7	5
64	The Effects of Site Conditions and Mitigation Practices on Success of Establishing the Valley Elderberry Longhorn Beetle and Its Host Plant, Blue Elderberry. Environmental Management, 2008, 42, 444-457.	2.7	7
65	A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19052-19059.	7.1	2,043
66	Species' traits predict the effects of disturbance and productivity on diversity. Ecology Letters, 2008, 11, 348-356.	6.4	141
67	DISTINGUISHING STRESSORS ACTING ON LAND BIRD COMMUNITIES IN AN URBANIZING ENVIRONMENT. Ecology, 2008, 89, 2302-2314.	3.2	80
68	Trends and missing parts in the study of movement ecology. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19060-19065.	7.1	276
69	Rethinking a rare-species conservation strategy in an urban landscape: The case of the valley elderberry longhorn beetle. Biological Conservation, 2007, 135, 21-32.	4.1	22
70	Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?. Ecology Letters, 2007, 10, 77-94.	6.4	343
71	EVALUATING THE LONG-TERM METACOMMUNITY DYNAMICS OF TREE HOLE MOSQUITOES. Ecology, 2006, 87, 2582-2590.	3.2	61
72	The Effects of Dust on the Federally Threatened Valley Elderberry Longhorn Beetle. Environmental Management, 2006, 37, 647-658.	2.7	10

#	Article	IF	CITATIONS
73	RECONCILING EMPIRICAL ECOLOGY WITH NEUTRAL COMMUNITY MODELS. Ecology, 2006, 87, 1370-1377.	3.2	87
74	The Contribution of Laboratory Experiments on Protists to Understanding Population and Metapopulation Dynamics. Advances in Ecological Research, 2005, 37, 245-271.	2.7	40
75	The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 2004, 7, 601-613.	6.4	4,069
76	Mechanisms of Coexistence in Competitive Metacommunities. American Naturalist, 2004, 164, 310-326.	2.1	124
77	CONNECTING THEORETICAL AND EMPIRICAL STUDIES OF TRAIT-MEDIATED INTERACTIONS. Ecology, 2003, 84, 1101-1114.	3.2	300
78	Patterns of Dispersal and Dynamics among Habitat Patches Varying in Quality. American Naturalist, 2003, 162, 302-317.	2.1	43
79	CLINICOPATHOLOGIC FEATURES OF SUSPECTED BREVETOXICOSIS IN DOUBLE-CRESTED CORMORANTS (PHALACROCORAX AURITUS) ALONG THE FLORIDA GULF COAST. Journal of Zoo and Wildlife Medicine, 2002, 33, 8-15.	0.6	58
80	Riparian habitat fragmentation and population persistence of the threatened valley elderberry longhorn beetle in central California. Biological Conservation, 2001, 100, 103-113.	4.1	29
81	EMPIRICAL EVIDENCE FOR PREDATOR–PREY SOURCE–SINK DYNAMICS. Ecology, 2000, 81, 3087-3098.	3.2	23
82	PREDICTING EXTINCTION: PROGRESS WITH AN INDIVIDUAL-BASED MODEL OF PROTOZOAN PREDATORS AND PREY. Ecology, 2000, 81, 3312-3329.	3.2	14
83	Habitat Patch Arrangement and Metapopulation Persistence of Predators and Prey. American Naturalist, 2000, 156, 378-389.	2.1	98
84	Effects of nutrient enrichment on predator–prey metapopulation dynamics. Journal of Animal Ecology, 2000, 69, 985-997.	2.8	8
85	Effects of nutrient enrichment on predator-prey metapopulation dynamics. Journal of Animal Ecology, 2000, 69, 985-997.	2.8	36
86	Habitat subdivision causes changes in food web structure. Ecology Letters, 2000, 3, 509-515.	6.4	68
87	A roadmap for metapopulation research. Ecology Letters, 1999, 2, 273-275.	6.4	21
88	Effects of Introduced Mosquitofish and Bullfrogs on the Threatened California Red-Legged Frog. Conservation Biology, 1999, 13, 613-622.	4.7	183
89	Omnivory and the stability of simple food webs. Oecologia, 1998, 117, 413-419.	2.0	77
90	Transcontinental Crashes of Insect Populations?. American Naturalist, 1998, 152, 480-484.	2.1	80

6

#	Article	IF	CITATIONS
91	Effects of Moonlight and Meteorological Factors on Light and Bait Trap Catches of Noctuid Moths (Lepidoptera: Noctuidae). Environmental Entomology, 1997, 26, 1283-1290.	1.4	166
92	Weather-induced changes in moth activity bias measurement of long-term population dynamics from light trap samples. Entomologia Experimentalis Et Applicata, 1997, 83, 329-335.	1.4	43
93	The Role of Dispersal in PredatorPrey Metapopulation Dynamics. Journal of Animal Ecology, 1996, 65, 640.	2.8	106
94	Factors influencing detection of density dependence in British birds. Oecologia, 1996, 108, 47-53.	2.0	15
95	Factors influencing detection of density dependence in British birds. Oecologia, 1996, 108, 54-63.	2.0	21
96	Persistence of an Extinction-Prone Predator-Prey Interaction Through Metapopulation Dynamics. Ecology, 1996, 77, 1867-1879.	3.2	240
97	Appropriate Time Scales for Identifying Lags in Density-Dependent Processes. Journal of Animal Ecology, 1994, 63, 479.	2.8	10
98	Identifying Delayed Density Dependence in Time-Series Data. Oikos, 1994, 70, 296.	2.7	32
99	Comment arising from a paper by Wolda and Dennis: using and interpreting the results of tests for density dependence. Oecologia, 1993, 95, 592-594.	2.0	33
100	New insights into testing for density dependence. Oecologia, 1993, 93, 435-444.	2.0	48
101	Avoiding erroneously high levels of detection in combinations of semi-independent tests. Oecologia, 1993, 95, 103-114.	2.0	7
102	The frequency of detection of density dependence in insect orders. Ecological Entomology, 1993, 18, 339-347.	2.2	16
103	Detection of density dependence from annual censuses of bracken-feeding insects. Oecologia, 1992, 91, 425-430.	2.0	27
104	The combination of electronic monitoring and videoâ€assisted observations of plant penetration by aphids and behavioural effects of polygodial. Entomologia Experimentalis Et Applicata, 1992, 62, 233-239.	1.4	55
105	Aphid sex pheromone components: Age-dependent release by females and species-specific male response. Chemoecology, 1990, 1, 63-68.	1.1	56
106	Plant trait covariance and nonlinear averaging: a reply to Koussoroplis et al Rethinking Ecology, 0, 4, 115-118.	0.0	0