
Shuxiao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.	3.3	1,193
2	A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 2017, 579, 1000-1034.	3.9	815
3	Air quality management in China: Issues, challenges, and options. Journal of Environmental Sciences, 2012, 24, 2-13.	3.2	462
4	Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment, 2008, 42, 8442-8452.	1.9	409
5	Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003. Environmental Science & Technology, 2006, 40, 5312-5318.	4.6	406
6	Particulate and Trace Gas Emissions from Open Burning of Wheat Straw and Corn Stover in China. Environmental Science & Technology, 2007, 41, 6052-6058.	4.6	373
7	Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 2015, 15, 10529-10566.	1.9	365
8	NO _x emissions in China: historical trends and future perspectives. Atmospheric Chemistry and Physics, 2013, 13, 9869-9897.	1.9	359
9	Updated Emission Inventories for Speciated Atmospheric Mercury from Anthropogenic Sources in China. Environmental Science & Technology, 2015, 49, 3185-3194.	4.6	356
10	Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 2010, 10, 1183-1192.	1.9	352
11	The impact of the "Air Pollution Prevention and Control Action Plan―on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Science of the Total Environment, 2017, 580, 197-209.	3.9	344
12	Air pollution and control action in Beijing. Journal of Cleaner Production, 2016, 112, 1519-1527.	4.6	329
13	Quantifying the Air Pollutants Emission Reduction during the 2008 Olympic Games in Beijing. Environmental Science & Technology, 2010, 44, 2490-2496.	4.6	327
14	Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7760-7765.	3.3	308
15	Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 2016, 89-90, 212-221.	4.8	287
16	Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmospheric Environment, 2013, 70, 39-50.	1.9	286
17	Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 2019, 126, 747-761.	4.8	278
18	Emission trends and mitigation options for air pollutants in East Asia. Atmospheric Chemistry and Physics, 2014, 14, 6571-6603.	1.9	269

#	Article	IF	CITATIONS
19	Change in household fuels dominates the decrease in PM _{2.5} exposure and premature mortality in China in 2005–2015. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12401-12406.	3.3	262
20	Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. Environmental Science & Technology, 2016, 50, 13428-13435.	4.6	255
21	Particulate matter pollution over China and the effects of control policies. Science of the Total Environment, 2017, 584-585, 426-447.	3.9	252
22	Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 2008, 42, 4976-4988.	1.9	242
23	A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere, 2019, 222, 391-398.	4.2	238
24	The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmospheric Environment, 2015, 107, 1-8.	1.9	237
25	Impact Assessment of Ammonia Emissions on Inorganic Aerosols in East China Using Response Surface Modeling Technique. Environmental Science & Technology, 2011, 45, 9293-9300.	4.6	222
26	Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering, 2020, 6, 1423-1431.	3.2	222
27	Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmospheric Chemistry and Physics, 2019, 19, 11303-11314.	1.9	215
28	Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 2018, 18, 7423-7438.	1.9	208
29	Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of the Total Environment, 2018, 621, 819-826.	3.9	206
30	Particle Size Distribution and Polycyclic Aromatic Hydrocarbons Emissions from Agricultural Crop Residue Burning. Environmental Science & Technology, 2011, 45, 5477-5482.	4.6	202
31	The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. Atmospheric Environment, 2010, 44, 285-293.	1.9	199
32	Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 2013, 77, 453-463.	1.9	199
33	Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. Atmospheric Chemistry and Physics, 2014, 14, 4573-4585.	1.9	198
34	Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmospheric Environment, 2010, 44, 1515-1523.	1.9	194
35	Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. Atmospheric Chemistry and Physics, 2011, 11, 5027-5044.	1.9	194
36	Carbonaceous Aerosol Emissions from Household Biofuel Combustion in China. Environmental Science & Technology, 2009, 43, 6076-6081.	4.6	192

#	Article	IF	CITATIONS
37	Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmospheric Environment, 2013, 65, 186-194.	1.9	192
38	Projections of SO ₂ , NO _x and carbonaceous aerosols emissions in Asia. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 602.	0.8	186
39	Estimated Contributions of Emissions Controls, Meteorological Factors, Population Growth, and Changes in Baseline Mortality to Reductions in Ambient PM2.5 and PM2.5-Related Mortality in China, 2013–2017. Environmental Health Perspectives, 2019, 127, 67009.	2.8	186
40	Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. Environmental Science & Technology, 2020, 54, 3881-3889.	4.6	180
41	Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environmental Pollution, 2013, 182, 101-110.	3.7	179
42	Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Science of the Total Environment, 2019, 689, 1293-1303.	3.9	179
43	Air quality and health benefits from fleet electrification in China. Nature Sustainability, 2019, 2, 962-971.	11.5	174
44	Impact of aerosol–meteorology interactions on fine particle pollution during China's severe haze episode in January 2013. Environmental Research Letters, 2014, 9, 094002.	2.2	172
45	Air pollution and lung cancer risks in China—a meta-analysis. Science of the Total Environment, 2006, 366, 500-513.	3.9	162
46	Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Science of the Total Environment, 2017, 586, 917-929.	3.9	159
47	Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. Environmental Science & amp; Technology, 2017, 51, 9950-9959.	4.6	152
48	A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants. Environmental Science & Technology, 2018, 52, 2400-2408.	4.6	152
49	Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Science of the Total Environment, 2019, 660, 1191-1200.	3.9	149
50	Source influence on emission pathways and ambient PM _{2.5} pollution over India (2015–2050). Atmospheric Chemistry and Physics, 2018, 18, 8017-8039.	1.9	148
51	Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO ₂ and NO _{<i>X</i>} Emissions Reduction in East China. Environmental Science and Technology Letters, 2017, 4, 221-227.	3.9	142
52	Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmospheric Environment, 2015, 123, 380-391.	1.9	140
53	Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. Journal of Environmental Sciences, 2014, 26, 13-22.	3.2	138
54	Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 2017, 17, 77-92.	1.9	137

#	Article	IF	CITATIONS
55	Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired Power Plants in China. Environmental Science & Technology, 2012, 46, 6385-6392.	4.6	136
56	Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Science of the Total Environment, 2017, 576, 347-361.	3.9	134
57	Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing. Environmental Science & Technology, 2017, 51, 13502-13508.	4.6	132
58	Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. Journal of Environmental Sciences, 2017, 53, 224-237.	3.2	129
59	Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. Atmospheric Chemistry and Physics, 2017, 17, 9869-9883.	1.9	129
60	Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 2011, 45, 6347-6358.	1.9	124
61	Impacts of coal burning on ambient PM _{2.5} pollution in China. Atmospheric Chemistry and Physics, 2017, 17, 4477-4491.	1.9	124
62	Mercury Flows in China and Global Drivers. Environmental Science & amp; Technology, 2017, 51, 222-231.	4.6	121
63	Rapid SO ₂ emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 17933-17943.	1.9	121
64	Characteristics of gaseous pollutants from biofuel-stoves in rural China. Atmospheric Environment, 2009, 43, 4148-4154.	1.9	117
65	Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China. Atmospheric Environment, 2012, 51, 94-99.	1.9	115
66	Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 2417-2433.	1.9	114
67	A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science and Engineering, 2014, 8, 631-649.	3.3	111
68	Important fossil source contribution to brown carbon in Beijing during winter. Scientific Reports, 2017, 7, 43182.	1.6	111
69	Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. Scientific Reports, 2016, 6, 28815.	1.6	110
70	Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1903-1914.	1.2	109
71	Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. Journal of Cleaner Production, 2017, 149, 629-635.	4.6	107
72	Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005–2015. Environment International, 2019, 132, 105111.	4.8	104

#	Article	IF	CITATIONS
73	Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China. Science of the Total Environment, 2007, 377, 12-26.	3.9	102
74	Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nature Climate Change, 2017, 7, 736-742.	8.1	102
75	Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. Environmental Research Letters, 2013, 8, 024031.	2.2	101
76	Deriving High-Resolution Emission Inventory of Open Biomass Burning in China based on Satellite Observations. Environmental Science & Technology, 2016, 50, 11779-11786.	4.6	101
77	Emission Characteristics of Particulate Matter from Rural Household Biofuel Combustion in China. Energy & Fuels, 2007, 21, 845-851.	2.5	100
78	Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution, 2018, 239, 544-553.	3.7	100
79	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
80	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 2019, 19, 12195-12207.	1.9	95
81	Measure-Specific Effectiveness of Air Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013–2017. Environmental Science & Technology, 2019, 53, 8938-8946.	4.6	95
82	Projections of air pollutant emissions and its impacts on regional air quality in China in 2020. Atmospheric Chemistry and Physics, 2011, 11, 3119-3136.	1.9	94
83	Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies. Environmental Science and Technology Letters, 2016, 3, 98-103.	3.9	94
84	Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes. Science of the Total Environment, 2017, 580, 283-296.	3.9	93
85	The quest for improved air quality may push China to continue its CO ₂ reduction beyond the Paris Commitment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29535-29542.	3.3	93
86	A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, 2017, 17, 12031-12050.	1.9	92
87	Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio, 2018, 47, 198-215.	2.8	92
88	Assessment of inter-city transport of particulate matter in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, 2018, 18, 4843-4858.	1.9	90
89	Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. Journal of Cleaner Production, 2019, 208, 340-352.	4.6	90
90	Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China. Atmospheric Environment, 2015, 123, 440-448.	1.9	88

#	Article	IF	CITATIONS
91	Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China. Environmental Science & Technology, 2018, 52, 1644-1654.	4.6	88
92	Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020. Atmospheric Environment, 2011, 45, 6863-6871.	1.9	87
93	Regional transport in Beijing-Tianjin-Hebei region and its changes during 2014–2017: The impacts of meteorology and emission reduction. Science of the Total Environment, 2020, 737, 139792.	3.9	85
94	Internal migration and urbanization in China: Impacts on population exposure to household air pollution (2000–2010). Science of the Total Environment, 2014, 481, 186-195.	3.9	84
95	Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies. Atmospheric Environment, 2016, 131, 164-170.	1.9	84
96	Mitigation Options of Atmospheric Hg Emissions in China. Environmental Science & Technology, 2018, 52, 12368-12375.	4.6	84
97	Residential Coal Combustion as a Source of Levoglucosan in China. Environmental Science & Technology, 2018, 52, 1665-1674.	4.6	83
98	Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China. Journal of Environmental Management, 2018, 227, 124-133.	3.8	82
99	The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China. Atmospheric Chemistry and Physics, 2019, 19, 6167-6183.	1.9	82
100	Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics. Atmospheric Environment, 2011, 45, 1786-1798.	1.9	81
101	Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources. Atmospheric Chemistry and Physics, 2013, 13, 10505-10516.	1.9	81
102	Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010. Atmospheric Chemistry and Physics, 2012, 12, 11153-11163.	1.9	80
103	Historical Trends in PM _{2.5} -Related Premature Mortality during 1990–2010 across the Northern Hemisphere. Environmental Health Perspectives, 2017, 125, 400-408.	2.8	80
104	Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renewable Energy, 2019, 130, 41-49.	4.3	79
105	Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 2014, 190, 166-175.	3.7	78
106	Source, transport and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011. Atmospheric Chemistry and Physics, 2014, 14, 1239-1254.	1.9	78
107	Casification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8206-8213.	3.3	78
108	Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon and carbon monoxide from household coal combustion in China. Scientific Reports, 2016, 6, 19306.	1.6	77

#	Article	IF	CITATIONS
109	The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. Chemical Engineering Journal, 2017, 326, 561-569.	6.6	75
110	Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmospheric Chemistry and Physics, 2010, 10, 2937-2946.	1.9	74
111	Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013). Aerosol and Air Quality Research, 2015, 15, 494-503.	0.9	74
112	Mitigation Potential of Mercury Emissions from Coal-Fired Power Plants in China. Energy & Fuels, 2012, 26, 4635-4642.	2.5	73
113	Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China. Atmospheric Environment, 2015, 120, 227-233.	1.9	72
114	Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China. Comptes Rendus - Geoscience, 2015, 347, 358-367.	0.4	71
115	Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality. Environmental Science & Technology, 2017, 51, 1007-1016.	4.6	71
116	Global health effects of future atmospheric mercury emissions. Nature Communications, 2021, 12, 3035.	5.8	71
117	Estimating NH ₃ emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model. Atmospheric Chemistry and Physics, 2015, 15, 6637-6649.	1.9	70
118	Mercury sorption study of halides modified bio-chars derived from cotton straw. Chemical Engineering Journal, 2016, 302, 305-313.	6.6	70
119	Combined solar power and storage as cost-competitive and grid-compatible supply for China's future carbon-neutral electricity system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	70
120	Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts. Scientific Reports, 2016, 6, 35992.	1.6	69
121	Material Flow for the Intentional Use of Mercury in China. Environmental Science & Technology, 2016, 50, 2337-2344.	4.6	69
122	Public health benefits of reducing air pollution in Shanghai: A proof-of-concept methodology with application to BenMAP. Science of the Total Environment, 2014, 485-486, 396-405.	3.9	68
123	Quantification of the enhanced effectiveness of NO _{_{control from simultaneous reductions of VOC and NH₃ for reducing air pollution in the Beijingâ€"Tianjinâ€"Hebei region, China. Atmospheric Chemistry and Physics, 2018, 18,}}	1.9	68
124	7799-7014. Emission-Limit-Oriented Strategy To Control Atmospheric Mercury Emissions in Coal-Fired Power Plants toward the Implementation of the Minamata Convention. Environmental Science & Technology, 2018, 52, 11087-11093.	4.6	68
125	Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. Fuel, 2016, 163, 232-239.	3.4	66
126	Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China. Atmospheric Chemistry and Physics, 2017, 17, 13103-13118.	1.9	64

#	Article	IF	CITATIONS
127	Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing. Environmental Pollution, 2018, 238, 230-237.	3.7	64
128	A Modeling Study of Coarse Particulate Matter Pollution in Beijing: Regional Source Contributions and Control Implications for the 2008 Summer Olympics. Journal of the Air and Waste Management Association, 2008, 58, 1057-1069.	0.9	63
129	Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. Chemical Engineering Journal, 2017, 315, 251-261.	6.6	62
130	Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study. Lancet Planetary Health, The, 2021, 5, e808-e817.	5.1	62
131	Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 2013, 447, 123-132.	3.9	61
132	Enhanced PM2.5 pollution in China due to aerosol-cloud interactions. Scientific Reports, 2017, 7, 4453.	1.6	61
133	Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. Environmental Pollution, 2012, 171, 109-117.	3.7	60
134	Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling. Atmospheric Chemistry and Physics, 2019, 19, 3447-3462.	1.9	60
135	Intake fraction of PM2.5 and NOX from vehicle emissions in Beijing based on personal exposure data. Atmospheric Environment, 2012, 57, 233-243.	1.9	59
136	Population-weighted exposure to PM2.5 pollution in China: An integrated approach. Environment International, 2018, 120, 111-120.	4.8	59
137	Toxic potency-adjusted control of air pollution for solid fuel combustion. Nature Energy, 2022, 7, 194-202.	19.8	59
138	New Insight into Atmospheric Mercury Emissions from Zinc Smelters Using Mass Flow Analysis. Environmental Science & Technology, 2015, 49, 3532-3539.	4.6	58
139	Deep Learning for Prediction of the Air Quality Response to Emission Changes. Environmental Science & Technology, 2020, 54, 8589-8600.	4.6	58
140	A novel peat biochar supported catalyst for the transesterification reaction. Energy Conversion and Management, 2017, 139, 89-96.	4.4	57
141	Health benefits of on-road transportation pollution control programs in China. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25370-25377.	3.3	57
142	Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study. Atmospheric Chemistry and Physics, 2020, 20, 14347-14359.	1.9	57
143	Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019. Environmental Science and Technology Letters, 2019, 6, 752-760.	3.9	56
144	Effects of air pollution control measures on air quality improvement in Guangzhou, China. Journal of Environmental Management, 2019, 244, 127-137.	3.8	56

#	Article	IF	CITATIONS
145	Quantifying Nonlinear Multiregional Contributions to Ozone and Fine Particles Using an Updated Response Surface Modeling Technique. Environmental Science & Technology, 2017, 51, 11788-11798.	4.6	55
146	Air pollutants in rural homes in Guizhou, China – Concentrations, speciation, and size distribution. Atmospheric Environment, 2010, 44, 4575-4581.	1.9	54
147	Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020. Frontiers of Environmental Science and Engineering, 2014, 8, 27-41.	3.3	53
148	Evaluation of One-Dimensional and Two-Dimensional Volatility Basis Sets in Simulating the Aging of Secondary Organic Aerosol with Smog-Chamber Experiments. Environmental Science & Technology, 2015, 49, 2245-2254.	4.6	53
149	Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. Atmospheric Chemistry and Physics, 2018, 18, 8279-8291.	1.9	53
150	High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. Atmospheric Chemistry and Physics, 2019, 19, 5605-5613.	1.9	53
151	Impacts of emissions and meteorological changes on China's ozone pollution in the warm seasons of 2013 and 2017. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	53
152	Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation. Atmospheric Chemistry and Physics, 2019, 19, 565-576.	1.9	53
153	Assessment of population exposure to particulate matter pollution in Chongqing, China. Environmental Pollution, 2008, 153, 247-256.	3.7	52
154	Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies. Environmental Pollution, 2010, 158, 3347-3353.	3.7	52
155	Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 2013, 111, 621-627.	3.4	52
156	Spatial and temporal variation of haze in China from 1961 to 2012. Journal of Environmental Sciences, 2016, 46, 134-146.	3.2	52
157	Flow Analysis of the Mercury Associated with Nonferrous Ore Concentrates: Implications on Mercury Emissions and Recovery in China. Environmental Science & Technology, 2016, 50, 1796-1803.	4.6	52
158	Sources of gaseous NH3 in urban Beijing from parallel sampling of NH3 and NH4+, their nitrogen isotope measurement and modeling. Science of the Total Environment, 2020, 747, 141361.	3.9	52
159	Optimization of a NO <i>_x</i> and VOC Cooperative Control Strategy Based on Clean Air Benefits. Environmental Science & Technology, 2022, 56, 739-749.	4.6	52
160	Mercury mass flow in iron and steel production process and its implications for mercury emission control. Journal of Environmental Sciences, 2016, 43, 293-301.	3.2	51
161	Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chemical Engineering Journal, 2017, 307, 544-552.	6.6	51
162	Primary Suppliers Driving Atmospheric Mercury Emissions through Global Supply Chains. One Earth, 2019, 1, 254-266.	3.6	50

#	Article	IF	CITATIONS
163	Characterization of non-methane hydrocarbons emitted from open burning of wheat straw and corn stover in China. Environmental Research Letters, 2009, 4, 044015.	2.2	49
164	Nonlinear relationships between air pollutant emissions and PM2.5-related health impacts in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2019, 661, 375-385.	3.9	49
165	Mercury enrichment and its effects on atmospheric emissions in cement plants of China. Atmospheric Environment, 2014, 92, 421-428.	1.9	48
166	Assessing the nonlinear response of fine particles to precursor emissions: development and application of an extended response surface modeling technique v1.0. Geoscientific Model Development, 2015, 8, 115-128.	1.3	48
167	Investigating the impact of regional transport on PM _{2.5} formation using vertical observation during APEC 2014 Summit in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 15451-15460.	1.9	48
168	Environmental Justice Aspects of Exposure to PM _{2.5} Emissions from Electric Vehicle Use in China. Environmental Science & Samp; Technology, 2015, 49, 13912-13920.	4.6	47
169	Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games. Journal of Environmental Sciences, 2016, 42, 9-18.	3.2	47
170	Air quality and health co-benefits of China's national emission trading system. Applied Energy, 2020, 261, 114226.	5.1	47
171	Introduction: Air Pollution in China. China Quarterly, 2018, 234, 279-298.	0.5	46
172	Air Pollutants are associated with Dry Eye Disease in Urban Ophthalmic Outpatients: a Prevalence Study in China. Journal of Translational Medicine, 2019, 17, 46.	1.8	46
173	Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2–WO3/TiO2 catalyst via in situ DRIFTS. Fuel, 2019, 239, 162-172.	3.4	46
174	Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China. Environmental Science & Technology, 2019, 53, 9269-9278.	4.6	44
175	Health benefit assessment of PM2.5 reduction in Pearl River Delta region of China using a model-monitor data fusion approach. Journal of Environmental Management, 2019, 233, 489-498.	3.8	44
176	Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources. One Earth, 2022, 5, 403-412.	3.6	44
177	Variation of Urban Atmospheric Ammonia Pollution and its Relation with PM2.5 Chemical Property in Winter of Beijing, China. Aerosol and Air Quality Research, 2016, 16, 1378-1389.	0.9	43
178	Meeting Minamata: Cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. Energy Policy, 2016, 88, 485-494.	4.2	43
179	Impact of ultra-low emission technology retrofit on the mercury emissions and cross-media transfer in coal-fired power plants. Journal of Hazardous Materials, 2020, 396, 122729.	6.5	43
180	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	3.9	43

#	Article	IF	CITATIONS
181	Promoting SO ₂ Resistance of a CeO ₂ (5)-WO ₃ (9)/TiO ₂ Catalyst for Hg ⁰ Oxidation via Adjusting the Basicity and Acidity Sites Using a CuO Doping Method. Environmental Science & Technology, 2020, 54, 1889-1897.	4.6	42
182	Ultrafine particle concentrations and exposures in four high-rise Beijing apartments. Atmospheric Environment, 2011, 45, 7574-7582.	1.9	41
183	Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method. Sustainability, 2017, 9, 1742.	1.6	41
184	Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. Environmental Pollution, 2020, 263, 114643.	3.7	41
185	Intake fractions of industrial air pollutants in China: Estimation and application. Science of the Total Environment, 2006, 354, 127-141.	3.9	40
186	Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China. Geophysical Research Letters, 2020, 47, e2020GL087721.	1.5	40
187	First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 2021, 55, 1497-1507.	4.6	40
188	China's greenhouse gas emissions for cropping systems from 1978–2016. Scientific Data, 2021, 8, 171.	2.4	40
189	Transesterification of vegetable oil on low cost and efficient meat and bone meal biochar catalysts. Energy Conversion and Management, 2017, 150, 214-221.	4.4	39
190	Understanding of Aerosol–Climate Interactions in China: Aerosol Impacts on Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under Future Climate and Emission Scenarios. Current Pollution Reports, 2019, 5, 36-51.	3.1	39
191	Commodity plastic burning as a source of inhaled toxic aerosols. Journal of Hazardous Materials, 2021, 416, 125820.	6.5	39
192	Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. Science China Earth Sciences, 2015, 58, 345-355.	2.3	38
193	Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s. Atmospheric Environment, 2019, 218, 117020.	1.9	38
194	Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products. Science of the Total Environment, 2019, 650, 653-660.	3.9	38
195	Local and Regional Contributions to Fine Particle Pollution in Winter of the Yangtze River Delta, China. Aerosol and Air Quality Research, 2016, 16, 1067-1080.	0.9	37
196	Characteristics of mercury cycling in the cement production process. Journal of Hazardous Materials, 2016, 302, 27-35.	6.5	37
197	Comparison of water-soluble inorganic ions and trace metals in PM2.5 between online and offline measurements in Beijing during winter. Atmospheric Pollution Research, 2019, 10, 1755-1765.	1.8	37
198	The Hidden Hazard of Household Air Pollution in Rural China. Environmental Science and Policy, 2019, 93, 27-33.	2.4	37

#	Article	IF	CITATIONS
199	Designation of acid rain and SO ₂ control zones and control policies in China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 1901-1914.	0.9	36
200	Title is missing!. Water, Air, and Soil Pollution, 2001, 130, 259-264.	1.1	36
201	Source apportionment of Pb-containing particles in Beijing during January 2013. Environmental Pollution, 2017, 226, 30-40.	3.7	36
202	Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015. Atmospheric Chemistry and Physics, 2017, 17, 10423-10433.	1.9	36
203	Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. Journal of Environmental Sciences, 2015, 33, 125-134.	3.2	35
204	Least-cost control strategy optimization for air quality attainment of Beijing–Tianjin–Hebei region in China. Journal of Environmental Management, 2019, 245, 95-104.	3.8	35
205	A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. Journal of Environmental Management, 2020, 253, 109751.	3.8	35
206	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. Environmental Science & Technology, 2022, 56, 175-184.	4.6	35
207	Calculation and decomposition of China's embodied air pollutants in Sino-US trade. Journal of Cleaner Production, 2019, 209, 978-994.	4.6	34
208	Synergistic Mercury Removal by Conventional Pollutant Control Strategies for Coal-Fired Power Plants in China. Journal of the Air and Waste Management Association, 2010, 60, 722-730.	0.9	33
209	Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. Atmospheric Chemistry and Physics, 2014, 14, 9259-9277.	1.9	33
210	Reduction in population exposure to PM 2.5 and cancer risk due to PM 2.5 -bound PAHs exposure in Beijing, China during the APEC meeting. Environmental Pollution, 2017, 225, 338-345.	3.7	33
211	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 2017, 17, 9133-9144.	1.9	33
212	Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China. Atmospheric Chemistry and Physics, 2019, 19, 13627-13646.	1.9	33
213	Estimation of abatement potentials and costs of air pollution emissions in China. Journal of Environmental Management, 2020, 260, 110069.	3.8	33
214	Switching to electric vehicles can lead to significant reductions of PM2.5 and NO2 across China. One Earth, 2021, 4, 1037-1048.	3.6	33
215	Foliage/atmosphere exchange of mercury in a subtropical coniferous forest in south China. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2006-2016.	1.3	32
216	Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China. Science of the Total Environment, 2018, 626, 519-527.	3.9	32

#	Article	IF	CITATIONS
217	Impacts of improved modeling resolution on the simulation of meteorology, air quality, and human exposure to PM2.5, O3 in Beijing, China. Journal of Cleaner Production, 2020, 243, 118574.	4.6	32
218	Importance of Wintertime Anthropogenic Glyoxal and Methylglyoxal Emissions in Beijing and Implications for Secondary Organic Aerosol Formation in Megacities. Environmental Science & Technology, 2020, 54, 11809-11817.	4.6	32
219	Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Science of the Total Environment, 2022, 814, 152654.	3.9	32
220	Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. Journal of Environmental Sciences, 2017, 51, 294-304.	3.2	31
221	Sulfur trioxide emissions from coal-fired power plants in China and implications on future control. Fuel, 2020, 261, 116438.	3.4	31
222	Potential environmental risk of trace elements in fly ash and gypsum from ultra–low emission coal–fired power plants in China. Science of the Total Environment, 2021, 798, 149116.	3.9	31
223	Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, China. Environmental Science & Technology, 2015, 49, 831-838.	4.6	30
224	Unexpected Benefits of Reducing Aerosol Cooling Effects. Environmental Science & Technology, 2016, 50, 7527-7534.	4.6	30
225	Non-negligible contributions to human health from increased household air pollution exposure during the COVID-19 lockdown in China. Environment International, 2022, 158, 106918.	4.8	30
226	Understanding PM2.5 sources in China: challenges and perspectives. National Science Review, 2017, 4, 801-803.	4.6	29
227	Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China. Atmospheric Chemistry and Physics, 2018, 18, 495-509.	1.9	29
228	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	3.9	29
229	Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 6737-6747.	1.9	29
230	High-yield H2 production from polypropylene through pyrolysis-catalytic reforming over activated carbon based nickel catalyst. Journal of Cleaner Production, 2022, 352, 131566.	4.6	29
231	Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. Journal of Environmental Sciences, 2015, 29, 178-188.	3.2	28
232	Assessment of Regional Mercury Deposition and Emission Outflow in Mainland China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9868-9890.	1.2	28
233	Behavior of Sulfur Oxides in Nonferrous Metal Smelters and Implications on Future Control and Emission Estimation. Environmental Science & amp; Technology, 2019, 53, 8796-8804.	4.6	28
234	Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing. Science of the Total Environment, 2020, 721, 137700.	3.9	28

#	Article	IF	CITATIONS
235	Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China. Energy Policy, 2014, 69, 478-488.	4.2	27
236	A Holistic Perspective Is Needed To Ensure Success of Minamata Convention on Mercury. Environmental Science & Technology, 2017, 51, 1070-1071.	4.6	27
237	Exploring deep learning for air pollutant emission estimation. Geoscientific Model Development, 2021, 14, 4641-4654.	1.3	27
238	Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Science of the Total Environment, 2014, 496, 668-677.	3.9	26
239	Mercury concentrations in forest soils and stream waters in northeast and south China. Science of the Total Environment, 2014, 496, 714-720.	3.9	26
240	Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification. Environmental Pollution, 2016, 218, 1191-1199.	3.7	26
241	Mercury flows in large-scale gold production and implications for Hg pollution control. Journal of Environmental Sciences, 2018, 68, 91-99.	3.2	26
242	Revealing the impacts of transboundary pollution on PM2.5-related deaths in China. Environment International, 2020, 134, 105323.	4.8	26
243	Comparison and overview of PM _{2.5} source apportionment methods. Chinese Science Bulletin, 2015, 60, 109-121.	0.4	26
244	Reactivity and deactivation mechanisms of toluene reforming over waste peat char-supported Fe/Ni/Ca catalyst. Fuel, 2020, 271, 117517.	3.4	25
245	Î 15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science and Engineering, 2021, 15, 126.	3.3	25
246	Role of emission controls in reducing the 2050 climate change penalty for PM2.5 in China. Science of the Total Environment, 2021, 765, 144338.	3.9	25
247	Impacts of COVID-19 response actions on air quality in China. Environmental Research Communications, 2020, 2, 075003.	0.9	25
248	The collective contribution of Chinese cities to territorial and electricity-related CO2 emissions. Journal of Cleaner Production, 2018, 189, 910-921.	4.6	24
249	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. Environmental Science & Technology, 2020, 54, 13409-13418.	4.6	24
250	Synergetic PM2.5 and O3 control strategy for the Yangtze River Delta, China. Journal of Environmental Sciences, 2023, 123, 281-291.	3.2	24
251	Upgrading to cleaner household stoves and reducing chronic obstructive pulmonary disease among women in rural China — A cost-benefit analysis. Energy for Sustainable Development, 2013, 17, 489-496.	2.0	23
252	Measurements of mercury speciation and fine particle size distribution on combustion of China coal seams. Fuel, 2013, 104, 732-738.	3.4	23

#	Article	IF	CITATIONS
253	Indoor PM and CO concentrations in rural Guizhou, China. Energy for Sustainable Development, 2014, 21, 51-59.	2.0	23
254	Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	23
255	Assessment of meteorology vs. control measures in the China fine particular matter trend from 2013 to 2019 by an environmental meteorology index. Atmospheric Chemistry and Physics, 2021, 21, 2999-3013.	1.9	23
256	Is surface water acidification a serious regional issue in China?. Science of the Total Environment, 2017, 584-585, 783-790.	3.9	22
257	Health Benefits and Costs of Clean Heating Renovation: An Integrated Assessment in a Major Chinese City. Environmental Science & Technology, 2021, 55, 10046-10055.	4.6	22
258	Benefit of China's reduction in nitrogen oxides emission to natural ecosystems in East Asia with respect to critical load exceedance. Environment International, 2020, 136, 105468.	4.8	21
259	Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown. Science of the Total Environment, 2021, 750, 142323.	3.9	21
260	Indoor Emissions of Carbonaceous Aerosol and Other Air Pollutants from Household Fuel Burning in Southwest China. Aerosol and Air Quality Research, 2014, 14, 1779-1788.	0.9	21
261	Fossil fuel combustion and biomass burning sources of global black carbon from GEOS-Chem simulation and carbon isotope measurements. Atmospheric Chemistry and Physics, 2019, 19, 11545-11557.	1.9	20
262	Pyrolysis char derived from waste peat for catalytic reforming of tar model compound. Applied Energy, 2020, 263, 114565.	5.1	20
263	Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. Science of the Total Environment, 2022, 818, 151722.	3.9	20
264	Considerations for decision-making on distributed power generation in rural areas. Energy Policy, 2013, 63, 708-715.	4.2	19
265	Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption. Environmental Science & Technology, 2018, 52, 5125-5134.	4.6	19
266	Sources of black carbon in the atmosphere and in snow in the Arctic. Science of the Total Environment, 2019, 691, 442-454.	3.9	19
267	A land use regression model of nitrogen dioxide and fine particulate matter in a complex urban core in Lanzhou, China. Environmental Research, 2019, 177, 108597.	3.7	19
268	Real-time source contribution analysis of ambient ozone using an enhanced meta-modeling approach over the Pearl River Delta Region of China. Journal of Environmental Management, 2020, 268, 110650.	3.8	19
269	Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning. Science of the Total Environment, 2020, 722, 137701.	3.9	19
270	Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting. Science of the Total Environment, 2021, 754, 142285.	3.9	19

#	Article	IF	CITATIONS
271	Highly Resolved Inventory of Mercury Release to Water from Anthropogenic Sources in China. Environmental Science & Technology, 2021, 55, 13860-13868.	4.6	19
272	Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China. Environmental Pollution, 2021, 289, 117860.	3.7	19
273	A Review on Adsorption Technologies for Mercury Emission Control. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 155-162.	1.3	18
274	Health Benefits of Emission Reduction under 1.5 °C Pathways Far Outweigh Climate-Related Variations in China. Environmental Science & Technology, 2021, 55, 10957-10966.	4.6	18
275	Addressing Unresolved Complex Mixture of I/SVOCs Emitted From Incomplete Combustion of Solid Fuels by Nontarget Analysis. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035835.	1.2	18
276	Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers. Frontiers in Energy, 2012, 6, 98-105.	1.2	17
277	Measurement of size-fractionated particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury. Science of the Total Environment, 2019, 675, 176-183.	3.9	17
278	Subtropical Forests Act as Mercury Sinks but as Net Sources of Gaseous Elemental Mercury in South China. Environmental Science & Technology, 2020, 54, 2772-2779.	4.6	17
279	Improved air quality in China can enhance solar-power performance and accelerate carbon-neutrality targets. One Earth, 2022, 5, 550-562.	3.6	17
280	Design of a Compact Dilution Sampler for Stationary Combustion Sources. Journal of the Air and Waste Management Association, 2011, 61, 1124-1130.	0.9	16
281	A case study of development and application of a streamlined control and response modeling system for PM2.5 attainment assessment in China. Journal of Environmental Sciences, 2016, 41, 69-80.	3.2	16
282	Improving Flue Gas Mercury Removal in Waste Incinerators by Optimization of Carbon Injection Rate. Environmental Science & Technology, 2018, 52, 1940-1945.	4.6	16
283	Source and sectoral contribution analysis of PM2.5 based on efficient response surface modeling technique over Pearl River Delta Region of China. Science of the Total Environment, 2020, 737, 139655.	3.9	16
284	Chemical deactivation of Selective Catalytic Reduction catalyst: Investigating the influence and mechanism of SeO2 poisoning. Fuel, 2020, 269, 117435.	3.4	16
285	Impact of buildings on surface solar radiation over urban Beijing. Atmospheric Chemistry and Physics, 2016, 16, 5841-5852.	1.9	15
286	Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia. Journal of Environmental Sciences, 2017, 57, 383-390.	3.2	15
287	Analysis of volatile organic compounds using cryogen-free thermal modulation based comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry. Journal of Chromatography A, 2019, 1587, 227-238.	1.8	15
288	Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene. Renewable Energy, 2020, 160, 964-973.	4.3	15

#	Article	IF	CITATIONS
289	Mercury emissions from coal combustion in China. , 2009, , 51-65.		15
290	Wind-blown dust and its impacts on particulate matter pollution in Northern China: current and future scenarios. Environmental Research Letters, 2021, 16, 114041.	2.2	15
291	Modeling the heterogeneous oxidation of elemental mercury by chlorine in flue gas. Fuel, 2020, 262, 116506.	3.4	14
292	Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	14
293	Mapping the daily nitrous acid (HONO) concentrations across China during 2006–2017 through ensemble machine-learning algorithm. Science of the Total Environment, 2021, 785, 147325.	3.9	14
294	Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019. Environmental Science & Technology, 2022, 56, 6956-6967.	4.6	14
295	Global Endeavors to Address the Health Effects of Urban Air Pollution. Environmental Science & Technology, 2022, 56, 6793-6798.	4.6	14
296	Designation of Sulfur Dioxide and Acid Rain Pollution Control Zones and Its Impacts on Energy Industry in China Journal of Chemical Engineering of Japan, 2001, 34, 1108-1113.	0.3	13
297	Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. Frontiers of Environmental Science and Engineering, 2015, 9, 1056-1065.	3.3	13
298	Development and case study of a science-based software platform to support policy making on air quality. Journal of Environmental Sciences, 2015, 27, 97-107.	3.2	13
299	Minamata Convention on Mercury: Chinese progress and perspectives. National Science Review, 2017, 4, 677-679.	4.6	13
300	Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. Environmental Pollution, 2019, 250, 1032-1043.	3.7	13
301	Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	13
302	Personal exposure to PM _{2.5} in Chinese rural households in the Yangtze River Delta. Indoor Air, 2019, 29, 403-412.	2.0	13
303	Gaseous and Particulate Chlorine Emissions From Typical Iron and Steel Industry in China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032729.	1.2	13
304	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environmental Pollution, 2021, 287, 117624.	3.7	13
305	Comprehensive chemical characterization of gaseous I/SVOC emissions from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry. Environmental Pollution, 2022, 305, 119284.	3.7	13
306	Developing a statistical model to explain the observed decline of atmospheric mercury. Atmospheric Environment, 2020, 243, 117868.	1.9	12

#	Article	IF	CITATIONS
307	Magnetic mineral constraint on lead isotope variations of coal fly ash and its implications for source discrimination. Science of the Total Environment, 2020, 713, 136320.	3.9	12
308	Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	12
309	The silver linings of mercury: Reconsideration of its impacts on living organisms from a multi-timescale perspective. Environment International, 2021, 155, 106670.	4.8	12
310	Characteristics and Sources of Speciated Atmospheric Mercury at a Coastal Site in the East China Sea Region. Aerosol and Air Quality Research, 2017, 17, 2913-2923.	0.9	12
311	Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	12
312	Emission factors and chemical profile of I/SVOCs emitted from household biomass stove in China. Science of the Total Environment, 2022, 842, 156940.	3.9	12
313	Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. Journal of Environmental Sciences, 2020, 95, 99-110.	3.2	11
314	PM2.5 Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in China. Aerosol and Air Quality Research, 2017, 17, 636-643.	0.9	11
315	Source contribution analysis of PM2.5 using Response Surface Model and Particulate Source Apportionment Technology over the PRD region, China. Science of the Total Environment, 2022, 818, 151757.	3.9	11
316	Impacts of Removal Compensation Effect on the Mercury Emission Inventories for Nonferrous Metal (Zinc, Lead, and Copper) Smelting in China. Environmental Science & Technology, 2022, 56, 2163-2171.	4.6	11
317	Microenvironmental time-activity patterns in Chongqing, China. Frontiers of Environmental Science and Engineering in China, 2009, 3, 200-209.	0.8	10
318	Airborne trace metals from coal combustion in Beijing. Air Quality, Atmosphere and Health, 2013, 6, 157-165.	1.5	10
319	Mercury emission and speciation from industrial gold production using roasting process. Journal of Geochemical Exploration, 2016, 170, 72-77.	1.5	10
320	Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China. Science of the Total Environment, 2018, 618, 793-803.	3.9	10
321	What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index. Sustainability, 2019, 11, 4650.	1.6	10
322	Mercury accumulation in soil from atmospheric deposition in temperate steppe of Inner Mongolia, China. Environmental Pollution, 2020, 258, 113692.	3.7	10
323	Why Was My Paper Rejected without Review?. Environmental Science & Technology, 2020, 54, 11641-11644.	4.6	10
324	Quantification of the enhancement of PM2.5 concentration by the downward transport of ozone from the stratosphere. Chemosphere, 2020, 255, 126907.	4.2	10

#	Article	IF	CITATIONS
325	Global Economic Structure Transition Boosts Atmospheric Mercury Emissions in China. Earth's Future, 2021, 9, e2021EF002076.	2.4	10
326	Catalytic toluene steam reforming using Ni supported catalyst from pyrolytic peat. Fuel Processing Technology, 2021, 224, 107032.	3.7	10
327	Air pollutant emissions induced by rural-to-urban migration during China's urbanization (2005–2015). Environmental Science and Ecotechnology, 2022, 10, 100166.	6.7	10
328	Data Assimilation of Ambient Concentrations of Multiple Air Pollutants Using an Emission-Concentration Response Modeling Framework. Atmosphere, 2020, 11, 1289.	1.0	9
329	Predicting the Nonlinear Response of PM2.5 and Ozone to Precursor Emission Changes with a Response Surface Model. Atmosphere, 2021, 12, 1044.	1.0	9
330	Measurement and minutely-resolved source apportionment of ambient VOCs in a corridor city during 2019 China International Import Expo episode. Science of the Total Environment, 2021, 798, 149375.	3.9	9
331	Effect of the Coal Preparation Process on Mercury Flows and Emissions in Coal Combustion Systems. Environmental Science & Technology, 2021, 55, 13687-13696.	4.6	9
332	Improvements of response surface modeling with self-adaptive machine learning method for PM2.5 and O3 predictions. Journal of Environmental Management, 2022, 303, 114210.	3.8	9
333	Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing. Remote Sensing, 2022, 14, 2762.	1.8	9
334	Enhanced mercury control but increased bromine and sulfur trioxides emissions after using bromine injection technology based on full-scale experiment. Fuel, 2021, 285, 119130.	3.4	8
335	New region demarcation method for implementing the Joint Prevention and Control of Atmospheric Pollution policy in China. Journal of Cleaner Production, 2021, 325, 129345.	4.6	8
336	Mimicking atmospheric photochemical modeling with a deep neural network. Atmospheric Research, 2022, 265, 105919.	1.8	8
337	Mercury emission characteristics and mechanism in the raw mill system of cement clinker production. Journal of Hazardous Materials, 2022, 430, 128403.	6.5	8
338	Impacts of U.S. Carbon Tariffs on China's Foreign Trade and Social Welfare. Sustainability, 2019, 11, 5278.	1.6	7
339	Significant Contribution of Coarse Black Carbon Particles to Light Absorption in North China Plain. Environmental Science and Technology Letters, 2022, 9, 134-139.	3.9	7
340	Elevated Gaseous Oxidized Mercury Revealed by a Newly Developed Speciated Atmospheric Mercury Monitoring System. Environmental Science & Technology, 2022, 56, 7707-7715.	4.6	7
341	Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces. Environmental Research Letters, 2017, 12, 125008.	2.2	6
342	Flame synthesized nanoscale catalyst (CuCeWTi) with excellent HgO oxidation activity and hydrothermal resistance. Journal of Hazardous Materials, 2021, 408, 124427.	6.5	6

#	Article	IF	CITATIONS
343	The toxicity emissions and spatialized health risks of heavy metals in PM2.5 from biomass fuels burning. Atmospheric Environment, 2022, 284, 119178.	1.9	6
344	Rapid Inference of Nitrogen Oxide Emissions Based on a Top-Down Method with a Physically Informed Variational Autoencoder. Environmental Science & Technology, 2022, 56, 9903-9914.	4.6	6
345	Diurnal variations of fossil and nonfossil carbonaceous aerosols in Beijing. Atmospheric Environment, 2015, 122, 349-356.	1.9	5
346	Largeâ€scale meteorological control on the spatial pattern of wintertime PM 2.5 pollution over China. Atmospheric Science Letters, 2019, 20, e938.	0.8	5
347	Determination of the stable carbon isotopic compositions of 2-methyltetrols for four forest areas in Southwest China: The implications for the δ13C values of atmospheric isoprene and C3/C4 vegetation distribution. Science of the Total Environment, 2019, 678, 780-792.	3.9	5
348	Polar organic aerosol tracers in two areas in Beijing-Tianjin-Hebei region: Concentration comparison before and in the sept. Third Parade and sources. Environmental Pollution, 2021, 270, 116108.	3.7	5
349	Critical loads of headwater streams in China using SSWC model modified by comprehensive F-factor. Science of the Total Environment, 2022, 802, 149780.	3.9	4
350	Response of fine particulate matter and ozone to precursors emission reduction in the Yangtze River Delta andits policy implications. Chinese Science Bulletin, 2022, 67, 2079-2088.	0.4	4
351	Role of black carbon in modulating aerosol direct effects driven by air pollution controls during 2013–2017 in China. Science of the Total Environment, 2022, 832, 154928.	3.9	4
352	The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation. Atmospheric Chemistry and Physics, 2022, 22, 5147-5156.	1.9	4
353	Data Science for Advancing Environmental Science, Engineering, and Technology: Upcoming Special and Virtual Issues in <i>ES&T</i> and <i>ES&T Letters</i> . Environmental Science & Technology, 2022, 56, 9827-9828.	4.6	4
354	Responses of nitrogen and sulfur deposition to NH3 emission control in the Yangtze River Delta, China. Environmental Pollution, 2022, 308, 119646.	3.7	4
355	Air pollution complex: Understanding the sources, formation processes and health effects. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	3
356	Quantity, Quality, and Accessibility: Big Data Collection, Analysis, and Synthesis in Environmental Science and Technology. Environmental Science and Technology Letters, 2021, 8, 287-288.	3.9	3
357	Differentiated emission control strategy based on comprehensive evaluation of multi-media pollution: Case of mercury emission control. Journal of Environmental Sciences, 2023, 123, 222-234.	3.2	3
358	Impacts of large-scale deployment of mountainous wind farms on wintertime regional air quality in the Beijing-Tian-Hebei area. Atmospheric Environment, 2022, 278, 119074.	1.9	3
359	Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS Environmental Au, 0, , .	3.3	3
360	Regional demarcation of synergistic control for PM2.5 and ozone pollution in China based on long-term and massive data mining. Science of the Total Environment, 2022, , 155975.	3.9	3

#	Article	IF	CITATIONS
361	Impact of Circular, Waste-Heat Reuse Pathways on PM _{2.5} -Air Quality, CO ₂ Emissions, and Human Health in India: Comparison with Material Exchange Potential. Environmental Science & Technology, 2022, 56, 9773-9783.	4.6	3
362	What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method. Sustainability, 2019, 11, 6252.	1.6	2
363	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. Sustainability, 2019, 11, 7113.	1.6	2
364	Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China. Atmosphere, 2020, 11, 1301.	1.0	2
365	Surface modification of <scp>TiO₂</scp> particles with 12â€hydroxy stearic acid and the effect of particle size on the mechanical and thermal properties of thermoplastic polyurethane urea elastomers. Journal of Applied Polymer Science, 2021, 138, 49898.	1.3	2
366	Data Science for Advancing Environmental Science, Engineering, and Technology: Upcoming Special and Virtual Issues in <i>ES&T</i> and <i>ES&T Letters</i> . Environmental Science and Technology Letters, 2022, 9, 581-582.	3.9	2
367	Impact of Climate-Driven Land-Use Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050. Atmosphere, 2022, 13, 1086.	1.0	2
368	Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	1
369	Air Pollution and Lung Cancer Risks. , 2019, , 29-40.		1
370	Improved atmospheric mercury simulation using updated gas-particle partition and organic aerosol concentrations. Journal of Environmental Sciences, 2022, , .	3.2	1
371	Response surface model based emission source contribution and meteorological pattern analysis in ozone polluted days. Environmental Pollution, 2022, , 119459.	3.7	1
372	<i>Environmental Science & amp; Technology Letters</i> Presents the 2020 Excellence in Review Awards. Environmental Science and Technology Letters, 2021, 8, 198-198.	3.9	0
373	COVID-19 and Beyond: Our Selections for the Best ES&T Letters Papers in 2020. Environmental Science and Technology Letters, 2021, 8, 604-605.	3.9	0
374	The Increasing Role of Synergistic Effects in Carbon Mitigation and Air Quality Improvement, and Its Associated Health Benefits in China. Engineering, 2023, 20, 103-111.	3.2	0