Craig Murdoch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2262217/publications.pdf

Version: 2024-02-01

112	9,690	43	96
papers	citations	h-index	g-index
113	113 docs citations	113	13729
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 2008, 8, 618-631.	28.4	1,404
2	Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 2004, 104, 2224-2234.	1.4	772
3	Chemokine receptors and their role in inflammation and infectious diseases. Blood, 2000, 95, 3032-3043.	1.4	678
4	Hypoxia Regulates Macrophage Functions in Inflammation. Journal of Immunology, 2005, 175, 6257-6263.	0.8	404
5	Macrophage Responses to Hypoxia. American Journal of Pathology, 2005, 167, 627-635.	3.8	381
6	Angiopoietin-2 Regulates Gene Expression in TIE2-Expressing Monocytes and Augments Their Inherent Proangiogenic Functions. Cancer Research, 2010, 70, 5270-5280.	0.9	299
7	Expression of Tie-2 by Human Monocytes and Their Responses to Angiopoietin-2. Journal of Immunology, 2007, 178, 7405-7411.	0.8	283
8	Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood, 2009, 114 , 844 - 859 .	1.4	271
9	CXCR4: chemokine receptor extraordinaire. Immunological Reviews, 2000, 177, 175-184.	6.0	260
10	CXC CHEMOKINE RECEPTOR EXPRESSION ON HUMAN ENDOTHELIAL CELLS. Cytokine, 1999, 11, 704-712.	3.2	258
11	Neutrophils: key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 2009, 90, 222-231.	1.3	257
12	Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends in Immunology, 2007, 28, 519-524.	6.8	255
13	Chemokine receptors and their role in inflammation and infectious diseases. Blood, 2000, 95, 3032-43.	1.4	253
14	Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion. Journal of Immunology, 2011, 186, 4183-4190.	0.8	185
15	Plasticity in Tumor-Promoting Inflammation: Impairment of Macrophage Recruitment Evokes a Compensatory Neutrophil Response. Neoplasia, 2008, 10, 329-IN2.	5.3	183
16	Macrophage migration and gene expression in response to tumor hypoxia. International Journal of Cancer, 2005, 117, 701-708.	5.1	176
17	Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nature Communications, 2015, 6, 8009.	12.8	126
18	Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2014, 11, 1176-1188.	4.6	122

#	Article	IF	Citations
19	Neutrophil-mediated tumour angiogenesis: Subversion of immune responses to promote tumour growth. Seminars in Cancer Biology, 2013, 23, 149-158.	9.6	119
20	Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors. Cancer Research, 2011, 71, 1805-1815.	0.9	111
21	A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Therapy, 2008, 15, 902-910.	4.5	98
22	Characterization of a functional C3A liver spheroid model. Toxicology Research, 2016, 5, 1053-1065.	2.1	96
23	Tissue-engineered Oral Mucosa. Journal of Dental Research, 2012, 91, 642-650.	5.2	90
24	Interobserver agreement in dysplasia grading: toward an enhanced gold standard for clinical pathology trials. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2015, 120, 474-482.e2.	0.4	86
25	Inhibition of neutrophil infiltration into A549 lung tumors ⟨i⟩in vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩ using a CXCR2â€specific antagonist is associated with reduced tumor growth. International Journal of Cancer, 2011, 129, 847-858.	5.1	81
26	Development of tissue-engineered models of oral dysplasia and early invasive oral squamous cell carcinoma. British Journal of Cancer, 2011, 105, 1582-1592.	6.4	81
27	<i>Candida albicans</i> -Endothelial Cell Interactions: a Key Step in the Pathogenesis of Systemic Candidiasis. Infection and Immunity, 2008, 76, 4370-4377.	2.2	77
28	HUMAN TOLL-LIKE RECEPTOR 4 MUTATIONS ARE ASSOCIATED WITH SUSCEPTIBILITY TO INVASIVE MENINGOCOCCAL DISEASE IN INFANCY. Pediatric Infectious Disease Journal, 2006, 25, 80-81.	2.0	76
29	Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa. Biomaterials, 2018, 178, 134-146.	11.4	73
30	Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. Journal of Infectious Diseases, 2019, 220, 1477-1488.	4.0	72
31	Polymersomeâ€mediated intracellular delivery of antibiotics to treat <i>Porphyromonas gingivalis</i> â€infected oral epithelial cells. FASEB Journal, 2013, 27, 4455-4465.	0.5	70
32	Functional expression of chemokine receptor CXCR4 on human epithelial cells. Immunology, 1999, 98, 36-41.	4.4	69
33	Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology, 2008, 213, 899-908.	1.9	66
34	Diffusion Studies of Nanometer Polymersomes Across Tissue Engineered Human Oral Mucosa. Pharmaceutical Research, 2009, 26, 1718-1728.	3.5	66
35	Adhesion of <i>Candida albicans</i> to Endothelial Cells under Physiological Conditions of Flow. Infection and Immunity, 2009, 77, 3872-3878.	2.2	58
36	Differential Virulence of Candida glabrata Glycosylation Mutants*. Journal of Biological Chemistry, 2013, 288, 22006-22018.	3.4	57

3

#	Article	IF	Citations
37	Pneumococcal nasopharyngeal carriage in children following heptavalent pneumococcal conjugate vaccination in infancy. Archives of Disease in Childhood, 2003, 88, 211-214.	1.9	56
38	Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis. Microbial Pathogenesis, 2011, 50, 278-285.	2.9	51
39	Identification of Novel Bacteriophages with Therapeutic Potential That Target $<$ i>Enterococcus faecalis $<$ $ $ i $>$. Infection and Immunity, 2019, 87, .	2.2	50
40	Internalization and biodistribution of polymersomes into oral squamous cell carcinoma cells <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2010, 5, 1025-1036.	3.3	49
41	The Role of HOXB9 and miR-196a in Head and Neck Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0122285.	2.5	49
42	Age-Dependent Association of Human Mannose-Binding Lectin Mutations With Susceptibility to Invasive Meningococcal Disease in Childhood. Pediatric Infectious Disease Journal, 2007, 26, 243-246.	2.0	48
43	<i>Porphyromonas gingivalis</i> Outer Membrane Vesicles Increase Vascular Permeability. Journal of Dental Research, 2020, 99, 1494-1501.	5.2	48
44	Impact of cell types and culture methods on the functionality of in vitro liver systems $\hat{a}\in$ A review of cell systems for hepatotoxicity assessment. Toxicology in Vitro, 2018, 48, 262-275.	2.4	45
45	Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. Microbiology (United Kingdom), 2011, 157, 1806-1815.	1.8	43
46	Chemokine receptors and their role in inflammation and infectious diseases. Blood, 2000, 95, 3032-3043.	1.4	43
47	Cholineâ€Binding Protein A ofStreptococcus pneumoniaeElicits Chemokine Production and Expression of Intercellular Adhesion Molecule 1 (CD54) by Human Alveolar Epithelial Cells. Journal of Infectious Diseases, 2002, 186, 1253-1260.	4.0	40
48	Chemokines induce the cellular migration of MCF-7 human breast carcinoma cells: subpopulations of tumour cells display positive and negative chemotaxis and differential in vivo growth potentials. Clinical and Experimental Metastasis, 1999, 17, 389-396.	3.3	38
49	Hypoxia-induced secretion of macrophage migration-inhibitory factor from MCF-7 breast cancer cells is regulated in a hypoxia-inducible factor-independent manner. Cancer Letters, 2008, 265, 239-249.	7.2	38
50	Denture-associated biofilm infection in three-dimensional oral mucosal tissue models. Journal of Medical Microbiology, 2018, 67, 364-375.	1.8	38
51	Immune mechanisms in oral lichen planus. Oral Diseases, 2023, 29, 1400-1415.	3.0	38
52	Macrophage-Based Anti-Cancer Therapy: Modelling Different Modes of Tumour Targeting. Bulletin of Mathematical Biology, 2007, 69, 1747-1776.	1.9	35
53	Characterisation and optimisation of organotypic oral mucosal models to study Porphyromonas gingivalis invasion. Microbes and Infection, 2014, 16, 310-319.	1.9	35
54	Fabrication of Electrospun Mucoadhesive Membranes for Therapeutic Applications in Oral Medicine. ACS Applied Materials & Drain (Interfaces, 2017, 9, 11557-11567.	8.0	35

#	Article	IF	Citations
55	Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. Materials Science and Engineering C, 2020, 112, 110917.	7.3	35
56	Chemokine Receptors and Their Role in Vascular Biology. Journal of Vascular Research, 2000, 37, 1-7.	1.4	34
57	Mechanisms of vascular damage by systemic dissemination of the oral pathogen <i>Porphyromonas gingivalis</i> . FEBS Journal, 2021, 288, 1479-1495.	4.7	34
58	Mucoadhesive Electrospun Fibre-Based Technologies for Oral Medicine. Pharmaceutics, 2020, 12, 504.	4.5	33
59	Characterisation of a functional rat hepatocyte spheroid model. Toxicology in Vitro, 2019, 55, 160-172.	2.4	32
60	Mucosal immune responses to capsular pneumococcal polysaccharides in immunized preschool children and controls with similar nasal pneumococcal colonization rates. Pediatric Infectious Disease Journal, 2004, 23, 307-313.	2.0	31
61	Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions. International Journal of Nanomedicine, 2014, 9, 4521.	6.7	31
62	â€~Cytology-on-a-chip' based sensors for monitoring of potentially malignant oral lesions. Oral Oncology, 2016, 60, 103-111.	1.5	30
63	Gingipainâ€dependent degradation of mammalian target of rapamycin pathway proteins by the periodontal pathogen <i>Porphyromonas gingivalis</i> during invasion. Molecular Oral Microbiology, 2013, 28, 366-378.	2.7	29
64	Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus, 2020, 10, 20190041.	3.0	29
65	Functional expression of the chemokine receptor XCR1 on oral epithelial cells. Journal of Pathology, 2010, 221, 153-163.	4.5	28
66	Development and Characterization of <i>In Vitro </i> Human Oral Mucosal Equivalents Derived from Immortalized Oral Keratinocytes. Tissue Engineering - Part C: Methods, 2016, 22, 1108-1117.	2.1	28
67	Mucoadhesive Electrospun Patch Delivery of Lidocaine to the Oral Mucosa and Investigation of Spatial Distribution in a Tissue Using MALDI-Mass Spectrometry Imaging. Molecular Pharmaceutics, 2019, 16, 3948-3956.	4.6	26
68	Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: From pre-formulation to cytotoxicity in tissue-engineering oral mucosa. European Journal of Pharmaceutical Sciences, 2020, 151, 105372.	4.0	26
69	Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases. Scientific Reports, 2016, 6, 36023.	3.3	25
70	Pseudohyphal Regulation by the Transcription Factor Rfg1p in Candida albicans. Eukaryotic Cell, 2010, 9, 1363-1373.	3.4	24
71	Cigarette smoke condensate promotes proâ€tumourigenic stromal–epithelial interactions by suppressing miRâ€145. Journal of Oral Pathology and Medicine, 2013, 42, 309-314.	2.7	23
72	Pointâ€ofâ€eare oral cytology tool for the screening and assessment of potentially malignant oral lesions. Cancer Cytopathology, 2020, 128, 207-220.	2.4	23

#	Article	IF	CITATIONS
73	Combined mathematical modelling and experimentation to predict polymersome uptake by oral cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 339-348.	3.3	20
74	Cooling of the oral mucosa to prevent adverse effects of chemotherapeutic agents: An inÂvitro study. Journal of Oral Pathology and Medicine, 2018, 47, 477-483.	2.7	20
7 5	Medium-Chain Fatty Acids Released from Polymeric Electrospun Patches Inhibit <i>Candida albicans</i> Growth and Reduce the Biofilm Viability. ACS Biomaterials Science and Engineering, 2020, 6, 4087-4095.	5.2	20
76	Pneumolysin-induced CXCL8 production by nasopharyngeal epithelial cells is dependent on calcium flux and MAPK activation via Toll-like receptor 4. Microbes and Infection, 2011, 13, 65-75.	1.9	19
77	Tissue-engineered oral mucosa to study radiotherapy-induced oral mucositis. International Journal of Radiation Biology, 2013, 89, 907-914.	1.8	18
78	Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects. Beilstein Journal of Nanotechnology, 2019, 10, 2304-2328.	2.8	17
79	Attenuation of doxorubicin-induced cardiotoxicity in a human in vitro cardiac model by the induction of the NRF-2 pathway. Biomedicine and Pharmacotherapy, 2019, 112, 108637.	5.6	16
80	Oral human papillomavirus infection in England and associated risk factors: a case–control study. BMJ Open, 2018, 8, e022497.	1.9	15
81	Khat (Catha edulis) alters the phenotype and anti-microbial activity of peripheral blood mononuclear cells. Journal of Ethnopharmacology, 2011, 138, 780-787.	4.1	14
82	HPV-negative, but not HPV-positive, oropharyngeal carcinomas induce fibroblasts to support tumour invasion through micro-environmental release of HGF and IL-6. Carcinogenesis, 2018, 39, 170-179.	2.8	14
83	The ILâ€1/ILâ€1R axis induces greater fibroblastâ€derived chemokine release in human papillomavirusâ€negative compared to positive oropharyngeal cancer. International Journal of Cancer, 2019, 144, 334-344.	5.1	14
84	In silico prediction of skin metabolism and its implication in toxicity assessment. Computational Toxicology, 2017, 3, 44-57.	3.3	13
85	Evaluating the use of optical coherence tomography for the detection of epithelial cancers in vitro. Journal of Biomedical Optics, 2011, 16, 116015.	2.6	12
86	Macrophage-mediated response to hypoxia in disease. Hypoxia (Auckland, N Z), 2014, 2, 185.	1.9	12
87	Role of OmpA2 surface regions of <i>Porphyromonas gingivalis </i> in host-pathogen interactions with oral epithelial cells. MicrobiologyOpen, 2017, 6, e00401.	3.0	12
88	A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth. Journal of Mathematical Biology, 2014, 69, 839-873.	1.9	11
89	IL-1/IL-1R Signaling in Head and Neck Cancer. Frontiers in Oral Health, 2021, 2, 722676.	3.0	11
90	The Role of Chemokines in Sepsis and Septic Shock. , 2002, 10, 38-57.		10

#	Article	IF	CITATIONS
91	Expression and enzyme activity of cytochrome P450 enzymes <scp>CYP</scp> 3A4 and <scp>CYP</scp> 3A5 in human skin and tissueâ€engineered skin equivalents. Experimental Dermatology, 2018, 27, 473-475.	2.9	9
92	Increased Abundance of Tumour-Associated Neutrophils in HPV-Negative Compared to HPV-Positive Oropharyngeal Squamous Cell Carcinoma Is Mediated by IL-1R Signalling. Frontiers in Oral Health, 2021, 2, 604565.	3.0	9
93	Methyl-donor depletion of head and neck cancer cells in vitro establishes a less aggressive tumour cell phenotype. European Journal of Nutrition, 2018, 57, 1321-1332.	3.9	8
94	Corticosteroid delivery using oral mucosa equivalents for the treatment of inflammatory mucosal diseases. European Journal of Oral Sciences, 2021, 129, e12761.	1.5	8
95	Immunoresponsive Tissue-Engineered Oral Mucosal Equivalents Containing Macrophages. Tissue Engineering - Part C: Methods, 2021, 27, 462-471.	2.1	8
96	Preparation of Primary Rat Hepatocyte Spheroids Utilizing the Liquidâ€Overlay Technique. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 81, e87.	1.1	7
97	In silico-guided optimisation of oxygen gradients in hepatic spheroids. Computational Toxicology, 2019, 12, 100093.	3.3	7
98	Haptoglobin expression in human colorectal cancer. Histology and Histopathology, 2019, 34, 953-963.	0.7	7
99	<i>Fusobacterium nucleatum</i> mediates endothelial damage and increased permeability following single species and polymicrobial infection. Journal of Periodontology, 2022, 93, 1421-1433.	3.4	7
100	Use of a Rho kinase inhibitor to increase human tonsil keratinocyte longevity for threeâ€dimensional, tissue engineered tonsil epithelium equivalents. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1636-e1646.	2.7	6
101	A Combined InÂVitro/In Silico Approach to Identifying Off-Target Receptor Toxicity. IScience, 2018, 4, 84-96.	4.1	5
102	Nuclear F-actin Cytology in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Journal of Dental Research, 2021, 100, 479-486.	5.2	5
103	Imaging of 3D Tissue-Engineered Models of Oral Cancer Using 890 and 1300 nm Optical Coherence Tomography. Sovremennye Tehnologii V Medicine, 2015, 7, 60-68.	1.1	5
104	Oral candidal carriage correlates with CD4 + cell count but not with HIV and highly active antiretroviral therapy status. Journal of Investigative and Clinical Dentistry, 2019, 10, e12438.	1.8	4
105	Uropathogenic Escherichia coli -induced neutrophil adhesion to urinary epithelium is strain-specific and mediated by CD11b/CD18. Urological Research, 2001, 29, 102-107.	1.5	3
106	Determination of Chemical Irritation Potential Using a Defined Gene Signature Set on Tissue-Engineered Human Skin Equivalents. JID Innovations, 2021, 1, 100011.	2.4	3
107	Tissue-engineered models of oral soft tissue diseases. , 2017, , 245-255.		2
108	<i>In vitro Candida albicans</i> biofilm formation on different titanium surface topographies. Biomaterial Investigations in Dentistry, 2020, 7, 146-157.	1.8	2

#	ARTICLE	IF	CITATIONS
109	A mathematical investigation into the uptake kinetics of nanoparticles in vitro. PLoS ONE, 2021, 16, e0254208.	2.5	2
110	Synthesized Polymer Vesicles as Antibiotic Delivery Vehicles for Treating Intracellular & Literal & Litera		1
111	Distribution of TAM relative to blood vessels in prostate carcinoma. Egyptian Journal of Pathology, 2012, 32, 217-226.	0.0	O
112	Gingipain-dependent degradation of mTOR pathway proteins by the periodontal pathogenPorphyromonas gingivalisduring invasion. Molecular Oral Microbiology, 2013, , n/a-n/a.	2.7	0