
Michael Rostas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2261494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olfactory responses of Argentine stem weevil to herbivory and endophyte-colonisation in perennial ryegrass. Journal of Pest Science, 2022, 95, 263-277.	3.7	8
2	Behavioural responses of diapausing <i>Halyomorpha halys</i> (Hemiptera: Pentatomidae) to conspecific volatile organic compounds. Journal of Applied Entomology, 2022, 146, 319-327.	1.8	2
3	Perspectives for integrated insect pest protection in oilseed rape breeding. Theoretical and Applied Genetics, 2022, 135, 3917-3946.	3.6	11
4	Histidine kinase two-component response regulators Ssk1, Skn7 and Rim15 differentially control growth, developmental and volatile organic compounds emissions as stress responses in Trichoderma atroviride. Current Research in Microbial Sciences, 2022, 3, 100139.	2.3	2
5	Biological control of invasive stink bugs: review of global state and future prospects. Entomologia Experimentalis Et Applicata, 2021, 169, 28-51.	1.4	60
6	Insights into Metabolic Changes Caused by the <i>Trichoderma virens</i> –Maize Root Interaction. Molecular Plant-Microbe Interactions, 2021, 34, 524-537.	2.6	14
7	Lack of involvement of chitinase in direct toxicity of Beauveria bassiana cultures to the aphid Myzus persicae. Journal of Invertebrate Pathology, 2020, 169, 107276.	3.2	9
8	Production of Microsclerotia From Entomopathogenic Fungi and Use in Maize Seed Coating as Delivery for Biocontrol Against Fusarium graminearum. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	11
9	Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biological Control, 2020, 150, 104347.	3.0	28
10	Host Range Expansion of an Endemic Insect Herbivore is Associated With High Nitrogen and Low Fibre Content in Exotic Pasture Plants. Journal of Chemical Ecology, 2020, 46, 544-556.	1.8	6
11	Volatile release, mobility, and mortality of diapausing Halyomorpha halys during simulated shipping movements and temperature changes. Journal of Pest Science, 2019, 92, 633-641.	3.7	11
12	Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Current Opinion in Insect Science, 2019, 35, 27-33.	4.4	32
13	Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against <i>Fusarium graminearum</i> and <i>Costelytra giveni</i> . Biocontrol Science and Technology, 2019, 29, 877-900.	1.3	22
14	Volatile compounds as insect lures: factors affecting release from passive dispenser systems. New Zealand Journal of Crop and Horticultural Science, 2019, 47, 208-223.	1.3	15
15	Transcriptional Reprogramming of Arabidopsis thaliana Defence Pathways by the Entomopathogen Beauveria bassiana Correlates With Resistance Against a Fungal Pathogen but Not Against Insects. Frontiers in Microbiology, 2019, 10, 615.	3.5	37
16	Contrasting olfactory responses of two egg parasitoids to buckwheat floral scent are reflected in field parasitism rates. Journal of Pest Science, 2019, 92, 747-756.	3.7	20
17	Identification and functional characterisation of an allene oxide synthase from grapevine (Vitis) Tj ETQq1 1 0.78	4314 rgBT 2.3	Överlock 10
18	Identification of volatiles released by diapausing brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). PLoS ONE, 2018, 13, e0191223.	2.5	21

2

MICHAEL ROSTAS

#	Article	IF	CITATIONS
19	The NADPH Oxidases Nox1 and Nox2 Differentially Regulate Volatile Organic Compounds, Fungistatic Activity, Plant Growth Promotion and Nutrient Assimilation in Trichoderma atroviride. Frontiers in Microbiology, 2018, 9, 3271.	3.5	31
20	Ants contribute to pollination but not to reproduction in a rare calcareous grassland forb. PeerJ, 2018, 6, e4369.	2.0	15
21	Chemical ecology meets conservation biological control: identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs. Journal of Pest Science, 2017, 90, 299-310.	3.7	42
22	Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Frontiers in Plant Science, 2017, 8, 102.	3.6	187
23	Editorial: Grassland-Invertebrate Interactions: Plant Productivity, Resilience and Community Dynamics. Frontiers in Plant Science, 2017, 8, 1413.	3.6	1
24	Evolution of Specialization of Cassida rubiginosa on Cirsium arvense (Compositae, Cardueae). Frontiers in Plant Science, 2016, 7, 1261.	3.6	9
25	Measuring Chitinase and Protease Activity in Cultures of Fungal Entomopathogens. Methods in Molecular Biology, 2016, 1477, 177-189.	0.9	5
26	Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes. Atmospheric Chemistry and Physics, 2016, 16, 7813-7823.	4.9	22
27	Salinity stress effects on direct and indirect defence metabolites in maize. Environmental and Experimental Botany, 2016, 122, 68-77.	4.2	62
28	Olfactory responses of western flower thrips (<i><scp>F</scp>rankliniella occidentalis</i>) populations to a nonâ€pheromone lure. Entomologia Experimentalis Et Applicata, 2015, 156, 254-262.	1.4	7
29	Leaf traits of congeneric host plants explain differences in performance of a specialist herbivore. Ecological Entomology, 2015, 40, 237-246.	2.2	6
30	Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia, 2015, 177, 487-497.	2.0	69
31	Trichoderma atroviride LU132 promotes plant growth but not induced systemic resistance to Plutella xylostella in oilseed rape. BioControl, 2014, 59, 241-252.	2.0	36
32	Gall volatiles defend aphids against a browsing mammal. BMC Evolutionary Biology, 2013, 13, 193.	3.2	60
33	Copper and herbivory lead to priming and synergism in phytohormones and plant volatiles in the absence of salicylate-jasmonate antagonism. Plant Signaling and Behavior, 2013, 8, e24264.	2.4	10
34	Heavy metal stress can prime for herbivoreâ€induced plant volatile emission. Plant, Cell and Environment, 2012, 35, 1287-1298.	5.7	47
35	Host Sex Discrimination by an Egg Parasitoid on Brassica Leaves. Journal of Chemical Ecology, 2011, 37, 622-628.	1.8	21
36	Nitrogen Deficiency Affects Bottom-Up Cascade Without Disrupting Indirect Plant Defense. Journal of Chemical Ecology, 2010, 36, 642-651.	1.8	37

MICHAEL ROSTAS

#	Article	IF	CITATIONS
37	Ants as Pollinators of Plants and the Role of Floral Scents. Cellular Origin and Life in Extreme Habitats, 2010, , 149-161.	0.3	15
38	Parasitoids use chemical footprints to track down caterpillars. Communicative and Integrative Biology, 2009, 2, 353-355.	1.4	10
39	Insects had it first: surfactants as a defence against predators. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 633-638.	2.6	43
40	Caterpillar Footprints as Host Location Kairomones for Cotesia marginiventris: Persistence and Chemical Nature. Journal of Chemical Ecology, 2009, 35, 20-27.	1.8	40
41	Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defence hypothesis. Chemoecology, 2008, 18, 29-38.	1.1	80
42	Plant surface wax affects parasitoid's response to host footprints. Die Naturwissenschaften, 2008, 95, 997-1002.	1.6	42
43	Honeybee buzz attenuates plant damage by caterpillars. Current Biology, 2008, 18, R1125-R1126.	3.9	26
44	Induction of systemic acquired resistance in Zea mays also enhances the plant's attractiveness to parasitoids. Biological Control, 2008, 46, 178-186.	3.0	50
45	Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense. Environmental Pollution, 2008, 155, 290-297.	7.5	51
46	<i>Pseudomonas syringae</i> Elicits Emission of the Terpenoid (E,E)-4,8,12-Trimethyl-1,3,7,11-Tridecatetraene in <i>Arabidopsis</i> Leaves Via Jasmonate Signaling and Expression of the Terpene Synthase TPS4. Molecular Plant-Microbe Interactions, 2008, 21, 1482-1497.	2.6	45
47	The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro. Journal of Pest Science, 2007, 80, 35-41.	3.7	37
48	Fungal Infection Reduces Herbivore-Induced Plant Volatiles of Maize but does not Affect NaÃ ⁻ ve Parasitoids. Journal of Chemical Ecology, 2006, 32, 1897-1909.	1.8	89
49	Indirect interactions between a phytopathogenic and an entomopathogenic fungus. Die Naturwissenschaften, 2003, 90, 63-67.	1.6	22
50	Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic and Applied Ecology, 2003, 4, 43-62.	2.7	94
51	Effects of mass releases of Trichogramma brassicae on predatory insects in maize. Entomologia Experimentalis Et Applicata, 2003, 108, 115-124.	1.4	17
52	Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feeding. Entomologia Experimentalis Et Applicata, 2002, 103, 267-277.	1.4	20
53	Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agricultural and Forest Entomology, 2002, 4, 223-231.	1.3	36
54	Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. Journal of Chemical Ecology, 2002, 28, 2449-2463.	1.8	53

#	Article	IF	CITATIONS
55	Infochemicals influencing the host foraging behaviour of Dahlbominus fuscipennis, a pupal parasitoid of the European spruce sawfly (Gilpinia hercyniae). Entomologia Experimentalis Et Applicata, 1998, 86, 221-227.	1.4	5
56	The effect of insecticide application by dropleg sprayers on pollen beetle parasitism in oilseed rape. BioControl, 0, , 1.	2.0	2
57	Histidine Kinase Two-Component Response Regulators Ssk1, Skn7 and Rim15 Differentially Control Growth, Developmental and Volatile Organic Compounds Emissions as Stress Responses in Trichoderma Atroviride. SSRN Electronic Journal, 0, , .	0.4	0

Thermal requirements for egg development of two endemic $\langle i \rangle$ Wiseana $\langle i \rangle$ pest species (Lepidoptera:) Tj ETQq0 0.0 rgBT /Overlock 10