Michael Traugott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2259968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	INVITED REVIEW: Molecular analysis of predation: a review of best practice for DNAâ€based approaches. Molecular Ecology, 2008, 17, 947-963.	3.9	566
2	DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes, 0, 2, e11321.	1.0	154
3	Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia, 2005, 142, 344-352.	2.0	152
4	Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods in Ecology and Evolution, 2012, 3, 898-905.	5.2	137
5	Empirically Characterising Trophic Networks. Advances in Ecological Research, 2013, , 177-224.	2.7	133
6	Biology, Ecology, and Control of Elaterid Beetles in Agricultural Land. Annual Review of Entomology, 2015, 60, 313-334.	11.8	116
7	A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environmental DNA, 2021, 3, 823-836.	5.8	102
8	Molecular scatology: how to improve prey DNA detection success in avian faeces?. Molecular Ecology Resources, 2011, 11, 620-628.	4.8	91
9	Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biology and Biochemistry, 2006, 38, 1872-1879.	8.8	90
10	Revealing species-specific trophic links in soil food webs: molecular identification of scarab predators. Molecular Ecology, 2007, 16, 1545-1557.	3.9	89
11	Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community. Molecular Ecology, 2008, 17, 3928-3938.	3.9	88
12	Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation . Bulletin of Entomological Research, 2012, 102, 239-247.	1.0	88
13	Diet of generalist predators reflects effects of cropping period and farming system on extra―and intraguild prey. Ecological Applications, 2017, 27, 1167-1177.	3.8	74
14	The feeding ecology of elaterid larvae in central European arable land: New perspectives based on naturally occurring stable isotopes. Soil Biology and Biochemistry, 2008, 40, 342-349.	8.8	69
15	Which prey sustains cold-adapted invertebrate generalist predators in arable land? Examining prey choices by molecular gut-content analysis. Journal of Applied Ecology, 2011, 48, 591-599.	4.0	67
16	Molecular analysis of predation on parasitized hosts. Bulletin of Entomological Research, 2008, 98, 223-231.	1.0	65
17	Detecting ingested plant DNA in soil-living insect larvae. Soil Biology and Biochemistry, 2011, 43, 346-350.	8.8	64
18	Parasitoid control of aphids in organic and conventional farming systems. Agriculture, Ecosystems and Environment, 2009, 133, 14-18.	5.3	63

2

#	Article	IF	CITATIONS
19	Monitoring spawning migrations of potamodromous fish species via eDNA. Scientific Reports, 2019, 9, 15388.	3.3	61
20	Intraguild predation in pioneer predator communities of alpine glacier forelands. Molecular Ecology, 2014, 23, 3744-3754.	3.9	60
21	Optimizing methods for PCRâ€based analysis of predation. Molecular Ecology Resources, 2011, 11, 795-801.	4.8	59
22	Impact of wildflower strips on biological control of cabbage lepidopterans. Agriculture, Ecosystems and Environment, 2009, 129, 310-314.	5.3	56
23	The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect. Molecular Ecology Resources, 2013, 13, 75-83.	4.8	53
24	Ecosystem function in predator–prey food webs—confronting dynamic models with empirical data. Journal of Animal Ecology, 2019, 88, 196-210.	2.8	52
25	The effects of temperature on detection of prey DNA in two species of carabid beetle. Bulletin of Entomological Research, 2008, 98, 263-269.	1.0	51
26	PCR-based species identification of <i>Agriotes</i> larvae. Bulletin of Entomological Research, 2011, 101, 201-210.	1.0	51
27	High Redundancy as well as Complementary Prey Choice Characterize Generalist Predator Food Webs in Agroecosystems. Scientific Reports, 2018, 8, 8054.	3.3	51
28	Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. Journal of Pest Science, 2016, 89, 281-293.	3.7	48
29	Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Functional Ecology, 2018, 32, 809-819.	3.6	48
30	Noncrop flowering plants restore topâ€down herbivore control in agricultural fields. Ecology and Evolution, 2013, 3, 2634-2646.	1.9	46
31	Dispersal abilities of adult click beetles in arable land revealed by analysis of carbon stable isotopes. Agricultural and Forest Entomology, 2009, 11, 333-339.	1.3	45
32	The Effect of Activity, Energy Use, and Species Identity on Environmental DNA Shedding of Freshwater Fish. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	43
33	Comparing four mitochondrial genes in earthworms – Implications for identification, phylogenetics, and discovery of cryptic species. Soil Biology and Biochemistry, 2012, 45, 23-30.	8.8	42
34	Unveiling soil food web links: New PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biology and Biochemistry, 2013, 57, 943-945.	8.8	42
35	Plant diversity affects behavior of generalist root herbivores, reduces crop damage, and enhances crop yield. Ecological Applications, 2013, 23, 1135-1145.	3.8	42
36	Rapid Plant Identification Using Species- and Group-Specific Primers Targeting Chloroplast DNA. PLoS ONE, 2012, 7, e29473.	2.5	41

#	Article	IF	CITATIONS
37	Molecular prey identification in Central European piscivores. Molecular Ecology Resources, 2016, 16, 123-137.	4.8	41
38	Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. Journal of Pest Science, 2019, 92, 935-942.	3.7	41
39	Detecting key parasitoids of lepidopteran pests by multiplex PCR. Biological Control, 2006, 39, 39-46.	3.0	40
40	Beneficial links for the control of aphids: the effects of compost applications on predators and prey. Journal of Applied Ecology, 2008, 45, 1266-1273.	4.0	39
41	Earthworm primers for DNA-based gut content analysis and their cross-reactivity in a multi-species system. Soil Biology and Biochemistry, 2006, 38, 1308-1315.	8.8	38
42	Scavenging and active predation in generalist predators: A mesocosm study employing DNA-based gut content analysis. Pedobiologia, 2012, 55, 1-5.	1.2	36
43	Food Web Designer: a flexible tool to visualize interaction networks. Journal of Pest Science, 2016, 89, 1-5.	3.7	36
44	Fish as predators and prey: <scp>DNA</scp> â€based assessment of their role in food webs. Journal of Fish Biology, 2021, 98, 367-382.	1.6	36
45	The effect of predator identity on post-feeding prey DNA detection success in soil-dwelling macro-invertebrates. Soil Biology and Biochemistry, 2013, 63, 116-123.	8.8	35
46	The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Scientific Reports, 2020, 10, 19315.	3.3	35
47	Evaluating 15N/14N and 13C/12C isotope ratio analysis to investigate trophic relationships of elaterid larvae (Coleoptera: Elateridae). Soil Biology and Biochemistry, 2007, 39, 1023-1030.	8.8	34
48	Increased decomposer diversity accelerates and potentially stabilises litter decomposition. Soil Biology and Biochemistry, 2015, 83, 138-141.	8.8	34
49	Stable isotope analysis reveals whether soil-living elaterid larvae move between agricultural crops. Soil Biology and Biochemistry, 2011, 43, 1612-1614.	8.8	33
50	Effects of plant identity and diversity on the dietary choice of a soilâ€ l iving insect herbivore. Ecology, 2012, 93, 2650-2657.	3.2	33
51	DNAâ€based analysis of regurgitates: a noninvasive approach to examine the diet of invertebrate consumers. Molecular Ecology Resources, 2012, 12, 669-675.	4.8	33
52	Detection of seed DNA in regurgitates of granivorous carabid beetles. Bulletin of Entomological Research, 2015, 105, 728-735.	1.0	33
53	Comparing three types of dietary samples for prey <scp>DNA</scp> decay in an insect generalist predator. Molecular Ecology Resources, 2018, 18, 966-973.	4.8	31
54	Occurrence of Agriotes wireworms in Austrian agricultural land. Journal of Pest Science, 2013, 86, 33-39.	3.7	30

#	Article	IF	CITATIONS
55	The prey spectrum of larval and adult Cantharis species in arable land: An electrophoretic approach. Pedobiologia, 2003, 47, 161-169.	1.2	29

57	Identification of the most common predatory hoverflies of Mediterranean vegetable crops and their parasitism using multiplex PCR. Journal of Pest Science, 2014, 87, 371-378.	3.7	28
58	A simple and cost-effective molecular method to track predation on Drosophila suzukii in the field. Journal of Pest Science, 2018, 91, 927-935.	3.7	28
59	The influence of meal size on prey <scp>DNA</scp> detectability in piscivorous birds. Molecular Ecology Resources, 2017, 17, e174-e186.	4.8	27
60	Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification. Ecology Letters, 2019, 22, 1568-1577.	6.4	26
61	Lateral and longitudinal fish environmental DNA distribution in dynamic riverine habitats. Environmental DNA, 2021, 3, 305-318.	5.8	26
62	How generalist herbivores exploit belowground plant diversity in temperate grasslands. Molecular Ecology, 2014, 23, 3826-3837.	3.9	25
63	Additive effects of predator diversity on pest control caused by few interactions among predator species. Ecological Entomology, 2015, 40, 362-371.	2.2	25
64	Resolving the predator first paradox: Arthropod predator food webs in pioneer sites of glacier forelands. Molecular Ecology, 2019, 28, 336-347.	3.9	25
65	Effects of prey quality and predator body size on prey <scp>DNA</scp> detection success in a centipede predator. Molecular Ecology, 2014, 23, 3767-3776.	3.9	24
66	Diet analysis in piscivorous birds: What can the addition of molecular tools offer?. Ecology and Evolution, 2017, 7, 1984-1995.	1.9	24
67	When to use next generation sequencing or diagnostic PCR in diet analyses. Molecular Ecology Resources, 2019, 19, 388-399.	4.8	23
68	Effects of the entomopathogenic fungus Beauveria brongniartii on the non-target predator Poecilus versicolor (Coleoptera: Carabidae). Biological Control, 2005, 33, 107-112.	3.0	22
69	Sparing spiders: faeces as a non-invasive source of DNA. Frontiers in Zoology, 2015, 12, 3.	2.0	22
70	Evaluation of an automated protocol for efficient and reliable <scp>DNA</scp> extraction of dietary samples. Ecology and Evolution, 2017, 7, 6382-6389.	1.9	22
71	A broadly applicable COI primer pair and an efficient singleâ€ŧube amplicon library preparation protocol for metabarcoding. Ecology and Evolution, 2018, 8, 12335-12350.	1.9	22
72	Facultative bacterial endosymbionts shape parasitoid food webs in natural host populations: A correlative analysis. Journal of Animal Ecology, 2018, 87, 1440-1451.	2.8	22

#	Article	IF	CITATIONS
73	Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing. PLoS ONE, 2016, 11, e0148781.	2.5	21
74	Group-Specific Multiplex PCR Detection Systems for the Identification of Flying Insect Prey. PLoS ONE, 2014, 9, e115501.	2.5	21
75	Impact of abiotic factors on predator-prey interactions: DNA-based gut content analysis in a microcosm experiment. Bulletin of Entomological Research, 2008, 98, 257-261.	1.0	20
76	Dwarf shrub litter as a food source for macro-decomposers in alpine pastureland. Applied Soil Ecology, 2009, 41, 178-184.	4.3	20
77	Introduction: Special issue on species interactions, ecological networks and community dynamics – Untangling the entangled bank using molecular techniques. Molecular Ecology, 2019, 28, 157-164.	3.9	20
78	An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Scientific Reports, 2017, 7, 3138.	3.3	18
79	Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos, 2018, 127, 915-926.	2.7	18
80	Species composition and seasonal dynamics of aphid parasitoids and hyperparasitoids in wheat fields in northern China. Scientific Reports, 2017, 7, 13989.	3.3	17
81	Structural and functional characteristics of high alpine soil macro-invertebrate communities. European Journal of Soil Biology, 2018, 86, 72-80.	3.2	17
82	Dispersal power, home range and habitat preference of cantharid larvae (Coleoptera: Cantharidae) in arable land. European Journal of Soil Biology, 2002, 38, 79-83.	3.2	16
83	The effect of plant identity and mixed feeding on the detection of seed DNA in regurgitates of carabid beetles. Ecology and Evolution, 2018, 8, 10834-10846.	1.9	16
84	Why <scp>eDNA</scp> fractions need consideration in biomonitoring. Molecular Ecology Resources, 2022, 22, 2458-2470.	4.8	16
85	Special issue on Drosophila suzukii: from global invasion to sustainable control. Journal of Pest Science, 2016, 89, 603-604.	3.7	15
86	Evaluation of three molecular markers for identification of European primary parasitoids of cereal aphids and their hyperparasitoids. PLoS ONE, 2017, 12, e0177376.	2.5	14
87	Intraguild predation is independent of landscape context and does not affect the temporal dynamics of aphids in cereal fields. Journal of Pest Science, 2020, 93, 235-249.	3.7	14
88	Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Scientific Reports, 2021, 11, 19510.	3.3	14
89	A twoâ€dimensional pooling approach towards efficient detection of parasitoid and pathogen <scp>DNA</scp> at low infestation rates. Methods in Ecology and Evolution, 2016, 7, 1548-1557.	5.2	13
90	ldentifying plant DNA in the sponging–feeding insect pest Drosophila suzukii. Journal of Pest Science, 2018, 91, 985-994.	3.7	13

#	Article	IF	CITATIONS
91	Detection of prey DNA in bat feces: Effects of time since feeding, meal size, and prey identity. Environmental DNA, 2021, 3, 959-969.	5.8	12
92	Saisonale Änderungen in der Artengemeinschaft und den Größenklassen epigäscher Präatoren in einem kleinen Feld. Entomologia Generalis, 2003, 26, 259-275.	3.1	12
93	Spatial distribution of epigaeic predators in a small field in relation to season and surrounding crops. Agriculture, Ecosystems and Environment, 2004, 103, 613-620.	5.3	11
94	Molecular identification of detritivorous soil invertebrates from their faecal pellets. Soil Biology and Biochemistry, 2010, 42, 1263-1267.	8.8	11
95	Maximizing dietary information retrievable from carcasses of Great Cormorants Phalacrocorax carbo using a combined morphological and molecular analytical approach. Ibis, 2016, 158, 51-60.	1.9	10
96	Sexâ€specific prey partitioning in breeding piscivorous birds examined via a novel, noninvasive approach. Ecology and Evolution, 2018, 8, 8985-8998.	1.9	10
97	Landscape complexity promotes resilience of biological pest control to climate change. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210547.	2.6	10
98	Drought-induced reduction in uptake of recently photosynthesized carbon by springtails and mites in alpine grassland. Soil Biology and Biochemistry, 2012, 55, 37-39.	8.8	9
99	Molecular Identification of Adult and Juvenile Linyphiid and Theridiid Spiders in Alpine Glacier Foreland Communities. PLoS ONE, 2014, 9, e101755.	2.5	9
100	<scp>RNA</scp> allows identifying the consumption of carrion prey. Molecular Ecology Resources, 2022, 22, 2662-2671.	4.8	8
101	Habitat use andÂactivity patterns ofÂlarval andÂadult Cantharis beetles inÂarable land. European Journal of Soil Biology, 2006, 42, 82-88.	3.2	7
102	Understanding the ecology of wireworms and improving their control: a special issue. Journal of Pest Science, 2013, 86, 1-2.	3.7	7
103	Host plant resistance promotes a secondary pest population. Ecosphere, 2020, 11, e03073.	2.2	7
104	Endpoint PCR coupled with capillary electrophoresis (celPCR) provides sensitive and quantitative measures of environmental DNA in singleplex and multiplex reactions. PLoS ONE, 2021, 16, e0254356.	2.5	7
105	Editorial 2010. Journal of Pest Science, 2010, 83, 1-2.	3.7	6
106	Empirical Methods of Identifying and Quantifying Trophic Interactions for Constructing Soil Food-Web Models. , 0, , 257-286.		6
107	Influence of plant fertilisation on cereal aphid-primary parasitoid-secondary parasitoid networks in simple and complex landscapes. Agriculture, Ecosystems and Environment, 2019, 281, 47-55.	5.3	6
108	Hidden in plain sight: phylogeography of an overlooked parasitoid species <i>Trioxys sunnysidensis</i> Fulbright & Pike (Hymenoptera: Braconidae: Aphidiinae). Agricultural and Forest Entomology, 2019, 21, 299-308.	1.3	6

#	Article	IF	CITATIONS
109	Limited detection of secondarily consumed plant food by DNAâ€based diet analysis of omnivorous carabid beetles. Environmental DNA, 2021, 3, 426-434.	5.8	6
110	The amount of environmental DNA increases with freshwater crayfish density and over time. Environmental DNA, 2022, 4, 417-424.	5.8	6
111	The Histerid Beetle Coenosis (Coleoptera: Histeridae) of an Organic Potato Field: Seasonal Dynamics, Age Structure, Life Cycles and Spatial Distribution. Biological Agriculture and Horticulture, 2002, 19, 365-376.	1.0	4
112	News from the Editor-in-Chief. Journal of Pest Science, 2008, 81, 1-2.	3.7	2
113	Editorial 2012: shaping the profile of Journal of Pest Science. Journal of Pest Science, 2012, 85, 1-3.	3.7	2
114	Editorial. Bulletin of Entomological Research, 2008, 98, 215-215.	1.0	0
115	Microchemical provenancing of prey remains in cormorant pellets reveals the use of diverse foraging grounds. Journal of Wildlife Management, 0, , .	1.8	0
116	Molecular Methods to Study Great Cormorant Feeding Ecology. Ardea, 2022, 109, .	0.6	0