List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/22596/publications.pdf Version: 2024-02-01

		117625	123424
112	4,393	34	61
papers	citations	h-index	g-index
112	112	112	5794
all docs	docs citations	times ranked	citing authors

WENHONG FAN

#	Article	IF	CITATIONS
1	Reaction heterogeneity in the bridging effect of divalent cations on polysaccharide fouling. Journal of Membrane Science, 2022, 641, 119933.	8.2	48
2	Substantial health benefits of strengthening guidelines on indoor fine particulate matter in China. Environment International, 2022, 160, 107082.	10.0	8
3	Global Exposure to Per- and Polyfluoroalkyl Substances and Associated Burden of Low Birthweight. Environmental Science & Technology, 2022, 56, 4282-4294.	10.0	20
4	Potential application of Au core labeling for tracking Ag nanoparticles in the aquatic and biological system. Water Research, 2022, 215, 118280.	11.3	4
5	Estimating the deposition of polycyclic aromatic hydrocarbons in human airways: The role of particle size. Atmospheric Pollution Research, 2022, 13, 101461.	3.8	1
6	Effect of organic matter on the trophic transfer of silver nanoparticles in an aquatic food chain. Journal of Hazardous Materials, 2022, 438, 129521.	12.4	5
7	Effect of different shapes of Nano-Cu2O and humic acid on two-generations of Daphnia Magna. Ecotoxicology and Environmental Safety, 2021, 207, 111274.	6.0	13
8	Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes. Bioresource Technology, 2021, 320, 124314.	9.6	28
9	Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments. Journal of Hazardous Materials, 2021, 406, 124680.	12.4	32
10	Associations between PM1 exposure and daily emergency department visits in 19 hospitals, Beijing. Science of the Total Environment, 2021, 755, 142507.	8.0	19
11	Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	31
12	Performance prediction of ZVI-based anaerobic digestion reactor using machine learning algorithms. Waste Management, 2021, 121, 59-66.	7.4	56
13	Influence of Humic Acid on Oxidative Stress Induced by Arsenite and Arsenate Waterborne Exposure in Danio rerio. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 786-791.	2.7	3
14	Removal of EDTA-Cu(II) from Water Using Synergistic Fenton Reaction-Assisted Adsorption by Nanomanganese Oxide-Modified Biochar: Performance and Mechanistic Analysis. ACS ES&T Water, 2021, 1, 1302-1312.	4.6	17
15	The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere, 2021, 268, 129364.	8.2	41
16	A Web-Based Database on Exposure to Persistent Organic Pollutants in China. Environmental Health Perspectives, 2021, 129, 57701.	6.0	16
17	A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms. Journal of Hazardous Materials, 2021, 414, 125517.	12.4	49
18	Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues. Journal of Hazardous Materials, 2021, 415, 125579.	12.4	10

#	Article	IF	CITATIONS
19	Formation of a Hydrogen Radical in Hydrogen Nanobubble Water and Its Effect on Copper Toxicity in <i>Chlorella</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 11100-11109.	6.7	19
20	Taxon-toxicity study of fish to typical transition metals: Most sensitive species are edible fish. Environmental Pollution, 2021, 284, 117154.	7.5	2
21	A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T Water, 2021, 1, 2174-2185.	4.6	8
22	Estimating the dietary exposure and risk of persistent organic pollutants in China: A national analysis. Environmental Pollution, 2021, 288, 117764.	7.5	27
23	Mortality Risk Associated with Short-Term Exposure to Particulate Matter in China: Estimating Error and Implication. Environmental Science & amp; Technology, 2021, 55, 1110-1121.	10.0	22
24	Biosafety of cadmium contaminated sediments after treated by indigenous sulfate reducing bacteria: Based on biotic experiments and DGT technique. Journal of Hazardous Materials, 2020, 384, 121439.	12.4	9
25	Effect of magnesium ion on polysaccharide fouling. Chemical Engineering Journal, 2020, 379, 122351.	12.7	60
26	Microbiological analysis of cadmium-contaminated sediments during biostabilization with indigenous sulfate-reducing bacteria. Journal of Soils and Sediments, 2020, 20, 584-593.	3.0	19
27	Characterizing the interactions between copper ions and dissolved organic matter using fluorescence excitation–emission matrices with two-dimensional Savitzky–Golay second-order differentiation. Ecotoxicology and Environmental Safety, 2020, 188, 109834.	6.0	4
28	Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure. Environmental Pollution, 2020, 256, 113459.	7.5	13
29	Factors determining the toxicity of engineered nanomaterials to <i>Tetrahymena thermophila</i> in freshwater: the critical role of organic matter. Environmental Science: Nano, 2020, 7, 304-316.	4.3	10
30	The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom. Environmental Pollution, 2020, 260, 113847.	7.5	46
31	Nano-manganese oxides-modified biochar for efficient chelated copper citrate removal from water by oxidation-assisted adsorption process. Science of the Total Environment, 2020, 709, 136154.	8.0	18
32	Predicting and comparing chronic water quality criteria from physicochemical properties of transition metals. Chemosphere, 2020, 244, 125465.	8.2	2
33	Low-grade heat energy driven microbial electrosynthesis for ethanol and acetate production from CO2 reduction. Journal of Power Sources, 2020, 477, 228990.	7.8	10
34	The dual effect of natural organic matter on the two-step internalization process of Au@Sio2 in freshwater. Water Research, 2020, 184, 116216.	11.3	8
35	Toxicity of reduced graphene oxide modified by metals in microalgae: Effect of the surface properties of algal cells and nanomaterials. Carbon, 2020, 169, 182-192.	10.3	32
36	Bibliometric and content analysis on emerging technologies of hydrogen production using microbial electrolysis cells. International Journal of Hydrogen Energy, 2020, 45, 33310-33324.	7.1	32

#	Article	IF	CITATIONS
37	Time-weighted average of fine particulate matter exposure and cause-specific mortality in China: a nationwide analysis. Lancet Planetary Health, The, 2020, 4, e343-e351.	11.4	41
38	Efficient removal of refractory organics in landfill leachate concentrates by electrocoagulation in tandem with simultaneous electro-oxidation and in-situ peroxone. Environmental Research, 2020, 183, 109249.	7.5	41
39	Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water. Journal of Hazardous Materials, 2020, 389, 122155.	12.4	22
40	Effect of TiO ₂ -nanoparticles on copper toxicity to bacteria: role of bacterial surface. RSC Advances, 2020, 10, 5058-5065.	3.6	14
41	Higher Risk of Cardiovascular Disease Associated with Smaller Size-Fractioned Particulate Matter. Environmental Science and Technology Letters, 2020, 7, 95-101.	8.7	92
42	The role of transparent exopolymer particles (TEP) in membrane fouling: A critical review. Water Research, 2020, 181, 115930.	11.3	128
43	A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources. Environmental Pollution, 2019, 253, 403-411.	7.5	19
44	The Characterization of Dissolved Organic Matter in Reclaimed Water and Its Influence on Copper Toxicity. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 704-709.	2.7	1
45	Two-generational effects and recovery of arsenic and arsenate on Daphnia magna in the presence of nano-TiO2. Ecotoxicology and Environmental Safety, 2019, 172, 136-143.	6.0	23
46	Effects of organic matter on uptake and intracellular trafficking of nanoparticles in <i>Tetrahymena thermophila</i> . Environmental Science: Nano, 2019, 6, 2116-2128.	4.3	16
47	Effect of chronic toxicity of the crystalline forms of TiO2 nanoparticles on the physiological parameters of Daphnia magna with a focus on index correlation analysis. Ecotoxicology and Environmental Safety, 2019, 181, 292-300.	6.0	17
48	Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of the Total Environment, 2019, 678, 253-266.	8.0	257
49	Mercury and methylmercury bioaccumulation in a contaminated bay. Marine Pollution Bulletin, 2019, 143, 134-139.	5.0	14
50	The Bioaccumulation and Tissue Distribution of Arsenic Species in Tilapia. International Journal of Environmental Research and Public Health, 2019, 16, 757.	2.6	30
51	Effects of hydrophobicity of titanium dioxide nanoparticles and exposure scenarios on copper uptake and toxicity in Daphnia magna. Water Research, 2019, 154, 162-170.	11.3	25
52	Comparative toxicity of pristine graphene oxide and its carboxyl, imidazole or polyethylene glycol functionalized products to Daphnia magna: A two generation study. Environmental Pollution, 2018, 237, 218-227.	7.5	33
53	Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 2018, 18, 1701-1719.	3.0	121
54	Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: Efficiency and process. Chemosphere, 2018, 201, 697-707.	8.2	26

#	Article	IF	CITATIONS
55	Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnology Advances, 2018, 36, 1194-1206.	11.7	108
56	Trophic transfer of Cu, Zn, Cd, and Cr, and biomarker response for food webs in Taihu Lake, China. RSC Advances, 2018, 8, 3410-3417.	3.6	13
57	Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides. Chemosphere, 2018, 197, 33-41.	8.2	96
58	Comparative assessment of the chronic effects of five nano-perovskites on <i>Daphnia magna</i> : a structure-based toxicity mechanism. Environmental Science: Nano, 2018, 5, 708-719.	4.3	8
59	Development of multi-metal interaction model for Daphnia magna : Significance of metallothionein in cellular redistribution. Ecotoxicology and Environmental Safety, 2018, 151, 42-48.	6.0	5
60	Interactions of natural organic matter on the surface of PVP-capped silver nanoparticle under different aqueous environment. Water Research, 2018, 138, 224-233.	11.3	34
61	Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups. Environmental Pollution, 2018, 236, 962-970.	7.5	33
62	Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing. Environmental Pollution, 2018, 240, 839-847.	7.5	35
63	Intermolecular interactions of polysaccharides in membrane fouling during microfiltration. Water Research, 2018, 143, 38-46.	11.3	82
64	Aging Influences on the Biokinetics of Functional TiO ₂ Nanoparticles with Different Surface Chemistries in <i>Daphnia magna</i> . Environmental Science & Technology, 2018, 52, 7901-7909.	10.0	14
65	Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides. Water Science and Technology, 2017, 75, 2489-2498.	2.5	20
66	The Daphnia magna role to predict the cadmium toxicity of sediment: Bioaccumlation and biomarker response. Ecotoxicology and Environmental Safety, 2017, 138, 206-214.	6.0	11
67	Dependence of the irradiation conditions and crystalline phases of TiO ₂ nanoparticles on their toxicity to Daphnia magna. Environmental Science: Nano, 2017, 4, 406-414.	4.3	23
68	Transgenerational effects of reduced graphene oxide modified by Au, Ag, Pd, Fe3O4, Co3O4 and SnO2 on two generations of Daphnia magna. Carbon, 2017, 122, 669-679.	10.3	24
69	Aging and behavior of functional TiO 2 nanoparticles in aqueous environment. Journal of Hazardous Materials, 2017, 325, 113-119.	12.4	19
70	Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna. Water Research, 2017, 108, 68-77.	11.3	63
71	Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus. International Journal of Environmental Research and Public Health, 2016, 13, 575.	2.6	27
72	High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach. Science of the Total Environment, 2016, 569-570, 1224-1231.	8.0	27

#	Article	IF	CITATIONS
73	Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere, 2016, 156, 228-235.	8.2	86
74	The mechanism of chronic toxicity to Daphnia magna induced by graphene suspended in a water column. Environmental Science: Nano, 2016, 3, 1405-1415.	4.3	23
75	Nano-TiO2 affects Cu speciation, extracellular enzyme activity, and bacterial communities in sediments. Environmental Pollution, 2016, 218, 77-85.	7.5	17
76	Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. Water Research, 2016, 105, 129-137.	11.3	54
77	The effects of Gd 3+ doping on the physical structure and photocatalytic performance of Bi 2 MoO 6 nanoplate crystals. Journal of Physics and Chemistry of Solids, 2016, 93, 7-13.	4.0	36
78	Nanosized yolk–shell Fe3O4@Zr(OH) spheres for efficient removal of Pb(II) from aqueous solution. Journal of Hazardous Materials, 2016, 309, 1-9.	12.4	42
79	Recent advances in the analytical applications of copper nanoclusters. TrAC - Trends in Analytical Chemistry, 2016, 77, 66-75.	11.4	166
80	Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna. Scientific Reports, 2015, 5, 11121.	3.3	12
81	Bioaccumulation and oxidative stress in <i>Daphnia magna</i> exposed to arsenite and arsenate. Environmental Toxicology and Chemistry, 2015, 34, 2629-2635.	4.3	25
82	Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals. Chinese Journal of Catalysis, 2015, 36, 2178-2185.	14.0	29
83	Determination of metallothionein in Daphnia magna by modified square wave cathodic stripping voltammetry. Electrochemistry Communications, 2015, 52, 17-20.	4.7	6
84	Synthesis of Ag@SiO ₂ yolk–shell nanoparticles for hydrogen peroxide detection. RSC Advances, 2015, 5, 17372-17378.	3.6	17
85	Chronic effects of six micro/nano-Cu2O crystals with different structures and shapes on Daphnia magna. Environmental Pollution, 2015, 203, 60-68.	7.5	17
86	A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell. Carbohydrate Polymers, 2015, 117, 211-214.	10.2	1
87	Contrasting metal detoxification in polychaetes, bivalves and fish from a contaminated bay. Aquatic Toxicology, 2015, 159, 62-68.	4.0	13
88	Using enriched stable isotope technique to study Cu bioaccumulation and bioavailability in Corbicula fluminea from Taihu Lake, China. Environmental Science and Pollution Research, 2014, 21, 14069-14077.	5.3	4
89	Nanosized Photocatalytic Materials 2013. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	0
90	Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry. Frontiers of Environmental Science and Engineering, 2014, 8, 357-371.	6.0	43

#	Article	IF	CITATIONS
91	Novel Pd-decorated amorphous Ni–B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Advances, 2014, 4, 51126-51132.	3.6	9
92	Layer-by-layer self-assembly of Nafion–[CS–PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Advances, 2014, 4, 24831-24837.	3.6	70
93	A Selfâ€Anchored Phosphotungstic Acid Hybrid Proton Exchange Membrane Achieved via One‧tep Synthesis. Advanced Energy Materials, 2014, 4, 1400842.	19.5	56
94	Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell. Frontiers of Environmental Science and Engineering, 2014, 8, 624-630.	6.0	21
95	Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete. Environmental Pollution, 2014, 191, 50-57.	7.5	56
96	Adsorption of sulfonamides on lake sediments. Frontiers of Environmental Science and Engineering, 2013, 7, 518-525.	6.0	12
97	Ultra-low loading Pt decorated coral-like Pd nanochain networks with enhanced activity and stability towards formic acid electrooxidation. Journal of Materials Chemistry A, 2013, 1, 1548-1552.	10.3	46
98	Zn Subcellular Distribution in Liver of Goldfish (Carassius Auratus) with Exposure to Zinc Oxide Nanoparticles and Mechanism of Hepatic Detoxification. PLoS ONE, 2013, 8, e78123.	2.5	27
99	Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna. Water Research, 2012, 46, 5981-5988.	11.3	44
100	Differential Oxidative Stress of Octahedral and Cubic Cu ₂ 0 Micro/Nanocrystals to <i>Daphnia magna</i> . Environmental Science & Technology, 2012, 46, 10255-10262.	10.0	85
101	Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. Journal of Materials Chemistry, 2012, 22, 21337.	6.7	462
102	Visibleâ€Light Photocatalytic Activity and Deactivation Mechanism of Ag ₃ PO ₄ Spherical Particles. Chemistry - an Asian Journal, 2012, 7, 1902-1908.	3.3	181
103	Phytoavailability and geospeciation of cadmium in contaminated soil remediated by Rhodobacter sphaeroides. Chemosphere, 2012, 88, 751-756.	8.2	37
104	Application of enriched stable isotope technique to the study of copper bioavailability in Daphnia magna. Journal of Environmental Sciences, 2011, 23, 831-836.	6.1	8
105	Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environmental Pollution, 2011, 159, 729-734.	7.5	151
106	Anaerobic Treatment of Phenolic Wastewaters. , 2010, , 185-205.		7
107	Bioremediation of Heavy Metal–Contaminated Soils by Sulfateâ€Reducing Bacteria. Annals of the New York Academy of Sciences, 2008, 1140, 446-454.	3.8	36
108	Influence of humic acid on bioavailability of heavy metals in sediments. Diqiu Huaxue, 2006, 25, 261-261.	0.5	1

#	Article	IF	CITATIONS
109	EXTRACTION OF SPIKED METALS FROM CONTAMINATED COASTAL SEDIMENTS: A COMPARISON OF DIFFERENT METHODS. Environmental Toxicology and Chemistry, 2003, 22, 2659.	4.3	27
110	Geochemistry of Cd, Cr, and Zn in Highly Contaminated Sediments and Its Influences on Assimilation by Marine Bivalves. Environmental Science & Technology, 2002, 36, 5164-5171.	10.0	62
111	Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China. Marine Pollution Bulletin, 2002, 44, 820-826.	5.0	63
112	Sediment geochemical controls on Cd, Cr, and Zn assimilation by the clam <i>Ruditapes philippinarum</i> . Environmental Toxicology and Chemistry, 2001, 20, 2309-2317.	4.3	37