Fred Sablitzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2259342/publications.pdf Version: 2024-02-01

FDED SABLITZEV

#	Article	IF	CITATIONS
1	Slow cycling intestinal stem cell and Paneth cell responses to Trichinella spiralis infection. Parasitology International, 2020, 74, 101923.	1.3	2
2	ID4 levels dictate the stem cell state in mouse spermatogonia. Development (Cambridge), 2017, 144, 624-634.	2.5	143
3	Heterogeneity in histone 2B-green fluorescent protein-retaining putative small intestinal stem cells at cell position 4 and their absence in the colon. American Journal of Physiology - Renal Physiology, 2012, 303, G1188-G1201.	3.4	22
4	DEF6, a Novel Substrate for the Tec Kinase ITK, Contains a Glutamine-rich Aggregation-prone Region and Forms Cytoplasmic Granules that Co-localize with P-bodies. Journal of Biological Chemistry, 2012, 287, 31073-31084.	3.4	26
5	Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood, 2011, 117, 862-871.	1.4	61
6	LYL-1 deficiency induces a stress erythropoiesis. Experimental Hematology, 2011, 39, 629-642.	0.4	13
7	Expression profiling of Wnt family of genes in normal and inflammatory bowel disease primary human intestinal myofibroblasts and normal human colonic crypt epithelial cells. Inflammatory Bowel Diseases, 2011, 17, 213-220.	1.9	54
8	ID4 regulates mammary gland development by suppressing p38MAPK activity. Development (Cambridge), 2011, 138, 5247-5256.	2.5	40
9	Def6 Is Required for Convergent Extension Movements during Zebrafish Gastrulation Downstream of Wnt5b Signaling. PLoS ONE, 2011, 6, e26548.	2.5	17
10	LYL1 activity is required for the maturation of newly formed blood vessels in adulthood. Blood, 2010, 115, 5270-5279.	1.4	21
11	Subnuclear targeting of the RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts. Chromosome Research, 2010, 18, 851-872.	2.2	9
12	ld4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation. PLoS Genetics, 2010, 6, e1001019.	3.5	67
13	Adult Hematopoietic Stem and Progenitor Cells Require Either Lyl1 or Scl for Survival. Cell Stem Cell, 2009, 4, 180-186.	11.1	117
14	20-P015 Def6, a novel guanine nucleotide exchange factor, acts downstream of Wnt5 in the non-canonical Wnt signaling pathway. Mechanisms of Development, 2009, 126, S309.	1.7	0
15	Loss of Id4 Accelerates CLL Progression in TCL1 Mice. Blood, 2008, 112, 3153-3153.	1.4	1
16	Impaired Erythropoiesis in LYL-1 Deficient Mice Blood, 2008, 112, 1412-1412.	1.4	0
17	The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl–/– phenotype. Blood, 2007, 109, 1908-1916.	1.4	71
18	lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny. Gene Expression Patterns, 2007, 7, 215-226.	0.8	29

FRED SABLITZKY

#	Article	IF	CITATIONS
19	The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood, 2006, 107, 4678-4686.	1.4	75
20	Multiple roles of Id4 in developmental myelination: Predicted outcomes and unexpected findings. Glia, 2006, 54, 285-296.	4.9	76
21	Comprehensive metabolic profiling of mono- and polyglutamated folates and their precursors in plant and animal tissue using liquid chromatography/negative ion electrospray ionisation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 2390-2398.	1.5	65
22	ld4 is required for the correct timing of neural differentiation. Developmental Biology, 2005, 280, 386-395.	2.0	82
23	Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neuroscience, 2004, 5, 4.	1.9	91
24	DEF6, a novel PH-DH-like domain protein, is an upstream activator of the Rho GTPases Rac1, Cdc42, and RhoA. Experimental Cell Research, 2004, 294, 335-344.	2.6	35
25	Role of the Transcription Factor LYL-1 in the Adult and Fetal Hematopoietic Stem Cells Blood, 2004, 104, 2775-2775.	1.4	3
26	Cre-mediated transgene activation in the developing and adult mouse brain. Genesis, 2001, 31, 118-125.	1.6	20
27	Assignment of the murine def-3 gene (<i>Rbm6</i>) to chromosome 9F1–F2 and its pseudogenes <i>Rbm6-ps1</i> and <i>Rbm6-ps2</i> to chromosome 1 by in situ hybridisation. Cytogenetic and Genome Research, 2000, 89, 238-239.	1.1	0
28	Def-2, -3, -6 and -8, novel mouse genes differentially expressed in the haemopoietic system. British Journal of Haematology, 1999, 106, 335-344.	2.5	54
29	DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC. Oncogene, 1999, 18, 2589-2597.	5.9	40
30	Structure, chromosomal localisation and expression of the murine dominant negative helix-loop-helix Id4 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 55-64.	2.4	11
31	Id helix—loop—helix proteins in cell growth and differentiation. Trends in Cell Biology, 1998, 8, 58-65.	7.9	125
32	Deletion of the IgH intronic enhancer and associated matrix-attachment regions decreases, but does not abolish, class switching at the mu locus. International Immunology, 1998, 10, 799-806.	4.0	60
33	Id helix-loop-helix proteins in cell growth and differentiation. Trends in Cell Biology, 1998, 8, 58-65.	7.9	344
34	Cloning and Targeted Deletion of the Mouse Fetuin Gene. Journal of Biological Chemistry, 1997, 272, 31496-31503.	3.4	222
35	Inducible Site-Directed Recombination in Mouse Embryonic Stem Cells. Nucleic Acids Research, 1996, 24, 543-548.	14.5	273
36	A homologue of the human MSS1 gene, a positive modulator of HIV-1 gene expression, is massively expressed in Xenopus oocytes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 293-295.	2.4	4

FRED SABLITZKY

#	Article	IF	CITATIONS
37	The expression pattern ofId4, a novel dominant negative helix-loop-helix protein, is distinct fromId1,1d2andId3. Nucleic Acids Research, 1994, 22, 749-755.	14.5	251
38	Modulation of antibody binding affinity by somatic mutation. International Journal of Cancer, 1988, 41, 1-8.	5.1	11
39	Transfected plasmacytoma cells do not transport the membrane form of IgM to the cell surface Journal of Experimental Medicine, 1988, 167, 652-657.	8.5	61
40	Timing, Genetic Requirements and Functional Consequences of Somatic Hypermutation during B-Cell Development. Immunological Reviews, 1987, 96, 5-22.	6.0	228
41	The impact of somatic mutation on antibody specificity. Fresenius Zeitschrift Für Analytische Chemie, 1986, 324, 202-202.	0.8	0
42	The complete nucleotide sequence of the I-Eαdimmune response gene. Nucleic Acids Research, 1983, 11, 5055-5071.	14.5	100
43	Spontaneous Immunoglobulin Class Switching in Myeloma and Hybridoma Cell Lines Differs from Physiological Class Switching. Immunological Reviews, 1982, 67, 59-72.	6.0	59
44	Id4. The AFCS-nature Molecule Pages, 0, , .	0.2	0