
Suresh Bhatia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258336/publications.pdf Version: 2024-02-01

<u> <u>Sudesh Rhatia</u></u>

#	Article	IF	CITATIONS
1	The induced orientation effect of linear gases during transport in a NaA zeolite membrane modified by alkali lignin. Journal of Membrane Science, 2021, 620, 118971.	8.2	7
2	Special Section on Flow Physics of Supercritical Fluids in Engineering. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	1,5	1
3	System Size-Dependent Transport Properties in Materials of Nanoscale Dimension. Journal of Physical Chemistry C, 2021, 125, 6963-6974.	3.1	7
4	Thermal performance assessment of a thermal energy storage tank: effect of aspect ratio and tilted angle. International Journal of Energy Research, 2021, 45, 11157-11178.	4.5	11
5	Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes, 2021, 11, 328.	3.0	9
6	Technoâ€economic analysis of a hybrid solarâ€geothermal power plant integrated with a desalination system. International Journal of Energy Research, 2021, 45, 17955-17970.	4.5	7
7	Assessment of CO2 adsorption capacity in Wollastonite using atomistic simulation. Journal of CO2 Utilization, 2021, 50, 101564.	6.8	6
8	Influence of force field used in carbon nanostructure reconstruction on simulated phenol adsorption isotherms in aqueous medium. Journal of Molecular Liquids, 2021, 344, 117548.	4.9	3
9	Viscoelastic parameters of invasive breast cancer in correlation with porous structure and elemental analysis data. Computer Methods and Programs in Biomedicine, 2021, 212, 106482.	4.7	3
10	Nonuniformity of Transport Coefficients in Ultrathin Nanoscale Membranes and Nanomaterials. ACS Applied Materials & Interfaces, 2021, 13, 59546-59559.	8.0	6
11	Water pool boiling across low pore density aluminum foams. Heat Transfer Engineering, 2020, 41, 1673-1682.	1.9	13
12	Multiscale simulation of gas transport in mixed-matrix membranes with interfacial polymer rigidification. Microporous and Mesoporous Materials, 2020, 296, 109982.	4.4	21
13	Interfacial Engineering of MOF-Based Mixed Matrix Membrane through Atomistic Simulations. Journal of Physical Chemistry C, 2020, 124, 594-604.	3.1	39
14	Transient natural convection: scale analysis of dry cooling towers. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2891-2897.	3.6	4
15	Selected Papers from the 1st International Conference on Nanofluids (ICNf). Heat Transfer Engineering, 2020, , 1-3.	1.9	1
16	Molecular Simulation and Computational Modeling of Gas Separation through Polycarbonate/ <i>p</i> -Nitroaniline/Zeolite 4A Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2020, 59, 16772-16785.	3.7	9
17	Development of Decision-Making Tool and Pareto Set Analysis for Bi-Objective Optimization of an ORC Power Plant. Energies, 2020, 13, 5280.	3.1	6
18	Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction. Journal of Thermal Analysis and Calorimetry, 2020, 141, 373-385.	3.6	31

#	Article	IF	CITATIONS
19	Impact of high adsorbent conductivity on adsorption of polar molecules: simulation of phenol adsorption on graphene sheets. Adsorption, 2020, 26, 537-552.	3.0	6
20	A comprehensive review on numerical approaches to simulate heat transfer of turbulent supercritical CO ₂ flows. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77, 349-400.	0.9	12
21	Influence of Morphology on Transport Properties and Interfacial Resistance in Nanoporous Carbons. Journal of Physical Chemistry C, 2019, 123, 21050-21058.	3.1	12
22	Interfacial barriers to gas transport: probing solid-gas interfaces at the atomistic level. Molecular Simulation, 2019, 45, 1148-1162.	2.0	11
23	Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes. Journal of Membrane Science, 2019, 587, 117157.	8.2	74
24	Atomistic Investigation of Mixed-Gas Separation in a Fluorinated Polyimide Membrane. ACS Applied Polymer Materials, 2019, 1, 1359-1371.	4.4	20
25	Special Issue on "Transport of Fluids in Nanoporous Materials― Processes, 2019, 7, 14.	2.8	4
26	Experimental Investigation on Spray Cooling Using Saline Water. Mathematical Geosciences, 2019, 51, 337-351.	2.4	6
27	Simulation of multicomponent gas transport through mixed-matrix membranes. Journal of Membrane Science, 2019, 577, 219-234.	8.2	12
28	Theoretical analysis of free convection in a partially foam-filled enclosure. Heat and Mass Transfer, 2019, 55, 1937-1946.	2.1	2
29	Cavitation in Diesel Fuel Injector Nozzles and its Influence on Atomization and Spray. Chemical Engineering and Technology, 2019, 42, 6-29.	1.5	29
30	Heat Transfer in Saline Water Evaporative Cooling. Heat Transfer Engineering, 2019, 40, 429-436.	1.9	4
31	Structure and Gas Transport at the Polymer–Zeolite Interface: Insights from Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2018, 10, 5992-6005.	8.0	50
32	Concentration-dependent transport in finite sized composites: Modified effective medium theory. Journal of Membrane Science, 2018, 550, 110-125.	8.2	10
33	Multicomponent transport in nanoporous networks: Theory and simulation. Chemical Engineering Journal, 2018, 346, 748-761.	12.7	5
34	Interfacial barriers to gas transport in zeolites: distinguishing internal and external resistances. Physical Chemistry Chemical Physics, 2018, 20, 26386-26395.	2.8	32
35	Estimation of Pore Size Distribution of Amorphous Silica-Based Membrane by the Activation Energies of Gas Permeation. Processes, 2018, 6, 239.	2.8	7
36	Effects of Flange Adsorption Affinity and Membrane Porosity on Interfacial Resistance in Carbon Nanotube Membranes. ACS Applied Materials & Interfaces, 2018, 10, 34706-34717.	8.0	13

#	Article	IF	CITATIONS
37	Modeling Permeation through Mixed-Matrix Membranes: A Review. Processes, 2018, 6, 172.	2.8	50
38	Carbon dioxide adsorption through carbon adsorbent structures: Effect of the porosity size, chemical potential and temperature. Computational Materials Science, 2018, 151, 255-272.	3.0	13
39	Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. Journal of Molecular Liquids, 2018, 265, 53-68.	4.9	41
40	Comparison of hollow fiber and flat mixed-matrix membranes: Theory and simulation. Chemical Engineering Science, 2018, 187, 174-188.	3.8	14
41	Enhanced CO ₂ sorption efficiency in amine-functionalised 2D/3D graphene/silica hybrid sorbents. Chemical Communications, 2018, 54, 10586-10589.	4.1	14
42	Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation. Chemical Communications, 2018, 54, 9494-9497.	4.1	15
43	Kinetic analysis for cyclic CO ₂ capture using lithium orthosilicate sorbents derived from different silicon precursors. Dalton Transactions, 2018, 47, 9038-9050.	3.3	39
44	Effect of the CaO sintering on the calcination rate of CaCO ₃ under atmospheres containing CO ₂ . AICHE Journal, 2018, 64, 3638-3648.	3.6	41
45	High Interfacial Barriers at Narrow Carbon Nanotube–Water Interfaces. Langmuir, 2018, 34, 8099-8111.	3.5	27
46	Investigation and simulation of the transport of gas containing mercury in microporous silica membranes. Chemical Engineering Science, 2018, 190, 286-296.	3.8	7
47	Particulate Fouling and Challenges of Metal Foam Heat Exchangers. Heat Transfer Engineering, 2017, 38, 730-742.	1.9	17
48	Selected Papers From the 17th IAHR (International Association for Hydro-Environment Engineering and) Tj ETQqQ Engineering, 2017, 38, 987-989.	0 0 rgBT 1.9	/Overlock 10 0
49	Effect of sintering on the reactivity of copper-based oxygen carriers synthesized by impregnation. Chemical Engineering Science, 2017, 162, 131-140.	3.8	9
50	Extending effective medium theory to finite size systems: Theory and simulation for permeation in mixed-matrix membranes. Journal of Membrane Science, 2017, 531, 148-159.	8.2	24
51	An Investigation on Cooling Performance of Air-Cooled Heat Exchangers Used in Coal Seam Gas Production. Heat Transfer Engineering, 2017, 38, 1073-1088.	1.9	4
52	On the modeling of the co ₂ â€catalyzed sintering of calcium oxide. AICHE Journal, 2017, 63, 3286-3296.	3.6	18
53	Effect of pore size on the interfacial resistance of a porous membrane. Journal of Membrane Science, 2017, 524, 738-745.	8.2	15
54	Porphyrin–graphene oxide frameworks for long life sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 13204-13211.	10.3	40

#	Article	IF	CITATIONS
55	Inhibitory Effect of Adsorbed Water on the Transport of Methane in Carbon Nanotubes. Langmuir, 2017, 33, 6280-6291.	3.5	18
56	Edge functionalised & Li-intercalated 555-777 defective bilayer graphene for the adsorption of CO2 and H2O. Applied Surface Science, 2017, 400, 375-390.	6.1	14
57	Characterizing Structural Complexity in Disordered Carbons: From the Slit Pore to Atomistic Models. Langmuir, 2017, 33, 831-847.	3.5	28
58	Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations. Langmuir, 2017, 33, 936-946.	3.5	35
59	Exceptionally high performance of charged carbon nanotube arrays for CO2 separation from flue gas. Carbon, 2017, 125, 245-257.	10.3	17
60	Techno-economic analysis of supercritical carbon dioxide power blocks. AIP Conference Proceedings, 2017, , .	0.4	12
61	Computational investigation on CO2 adsorption in titanium carbide-derived carbons with residual titanium. Carbon, 2017, 111, 741-751.	10.3	14
62	Novel model for the sintering of ceramics with bimodal pore size distributions: Application to the sintering of lime. AICHE Journal, 2017, 63, 893-902.	3.6	11
63	Lattice Boltzmann Pore Scale Simulation of Natural Convection in a Differentially Heated Enclosure Filled with a Detached or Attached Bidisperse Porous Medium. Transport in Porous Media, 2017, 116, 91-113.	2.6	21
64	Efficiency of a Combined Desalination and Power System Utilizing a Two-Phase Flow Multistream Heat Exchanger. Heat Transfer Engineering, 2017, 38, 1000-1007.	1.9	7
65	Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants. Energies, 2017, 10, 1676.	3.1	9
66	Thermodynamic Resistance to Matter Flow at The Interface of a Porous Membrane. Langmuir, 2016, 32, 3400-3411.	3.5	23
67	Effect of structural anisotropy and pore-network accessibility on fluid transport in nanoporous Ti3SiC2 carbide-derived carbon. Carbon, 2016, 103, 16-27.	10.3	23
68	Sodium ion storage in reduced graphene oxide. Electrochimica Acta, 2016, 214, 319-325.	5.2	49
69	Optimal Electrode Mass Ratio in Nanoporous Carbon Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 27925-27933.	3.1	9
70	Interfacial Resistance and Length-Dependent Transport Diffusivities in Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 26363-26373.	3.1	33
71	Fluorination-Induced Changes in Hydrophobicity of Silicon Carbide-Derived Nanoporous Carbon. Journal of Physical Chemistry C, 2016, 120, 18595-18606.	3.1	4
72	A new automatic spark generation system for gasoline engines. , 2016, , .		0

#	Article	IF	CITATIONS
73	Effect of fluorine doping on structure and CO2 adsorption in silicon carbide-derived carbon. Carbon, 2016, 96, 565-577.	10.3	37
74	Improved pore connectivity by the reduction of cobalt oxide silica membranes. Separation and Purification Technology, 2015, 154, 338-344.	7.9	10
75	Complementary Effects of Pore Accessibility and Decoordination on the Capacitance of Nanoporous Carbon Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 28809-28818.	3.1	18
76	Capacitance Optimization in Nanoscale Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 17573-17584.	3.1	21
77	Fluorinated Carbide-Derived Carbon: More Hydrophilic, Yet Apparently More Hydrophobic. Journal of the American Chemical Society, 2015, 137, 5969-5979.	13.7	18
78	Barriers to diffusion of CO2 in microporous carbon derived from silicon carbide. Carbon, 2015, 88, 1-15.	10.3	21
79	Defect-Mediated Reduction in Barrier for Helium Tunneling through Functionalized Graphene Nanopores. Journal of Physical Chemistry C, 2015, 119, 20940-20948.	3.1	13
80	Effect of Activating Agents: Flue Gas and CO ₂ on the Preparation of Activated Carbon for Methane Storage. Energy & Fuels, 2015, 29, 6296-6305.	5.1	6
81	Impact of H ₂ 0 on CO ₂ Separation from Natural Gas: Comparison of Carbon Nanotubes and Disordered Carbon. Journal of Physical Chemistry C, 2015, 119, 407-419.	3.1	47
82	Hybrid Reverse Monte Carlo simulation of amorphous carbon: Distinguishing between competing structures obtained using different modeling protocols. Carbon, 2015, 83, 53-70.	10.3	36
83	Differences in the adsorption and diffusion behaviour of water and non-polar gases in nanoporous carbon: role of cooperative effects of pore confinement and hydrogen bonding. Molecular Simulation, 2015, 41, 432-445.	2.0	17
84	Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study. Chemical Engineering Science, 2015, 121, 268-278.	3.8	74
85	Theoretical Prediction With Numerical and Experimental Verification to Predict Crosswind Effects on the Performance of Cooling Towers. Heat Transfer Engineering, 2015, 36, 480-487.	1.9	39
86	Conditional Methods in Modeling CO2 Capture from Coal Syngas. Energies, 2014, 7, 1899-1916.	3.1	1
87	A Comparison Between the Separated Flow Structures Near the Wake of a Bare and a Foam-Covered Circular Cylinder. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	1.5	18
88	Adsorption and transport of gases in a supported microporous silica membrane. Journal of Membrane Science, 2014, 460, 46-61.	8.2	21
89	Pore accessibility of Ti3SiC2-derived carbons. Carbon, 2014, 68, 531-541.	10.3	22
90	Effects of structural properties of silicon carbide-derived carbons on their electrochemical double-layer capacitance in aqueous and organic electrolytes. Journal of Solid State Electrochemistry, 2014, 18, 703-711.	2.5	10

#	Article	IF	CITATIONS
91	Influence of in-plane Stone–Thrower–Wales defects and edge functionalisation on the adsorption of CO2and H2O on graphene. RSC Advances, 2014, 4, 39576.	3.6	25
92	Influence of Structural Heterogeneity on Diffusion of CH ₄ and CO ₂ in Silicon Carbide-Derived Nanoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 11784-11798.	3.1	30
93	Understanding Adsorption and Transport of Light Gases in Hierarchical Materials Using Molecular Simulation and Effective Medium Theory. Journal of Physical Chemistry C, 2014, 118, 14355-14370.	3.1	29
94	The fluid dynamic effect on the driving force for a cobalt oxide silica membrane module at high temperatures. Chemical Engineering Science, 2014, 111, 142-152.	3.8	22
95	Understanding the diffusional tortuosity of porous materials: An effective medium theory perspective. Chemical Engineering Science, 2014, 110, 55-71.	3.8	36
96	Slow diffusion of methane in ultra-micropores of silicon carbide-derived carbon. Carbon, 2014, 77, 560-576.	10.3	25
97	The transport of gases in a supported mesoporous silica membrane. Journal of Membrane Science, 2013, 438, 90-104.	8.2	23
98	Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials, 2013, 6, 2662-2688.	2.9	30
99	Pore-Scale Numerical Experiment on the Effect of the Pertinent Parameters on Heat Flux Splitting at the Boundary of a Porous Medium. Transport in Porous Media, 2013, 98, 631-649.	2.6	14
100	The transport of gases in a mesoporous Î ³ -alumina supported membrane. Journal of Membrane Science, 2013, 428, 357-370.	8.2	14
101	Simulation of binary gas separation through multi-tube molecular sieving membranes at high temperatures. Chemical Engineering Journal, 2013, 218, 394-404.	12.7	31
102	Diffusion in Pore Networks: Effective Self-Diffusivity and the Concept of Tortuosity. Journal of Physical Chemistry C, 2013, 117, 3343-3357.	3.1	17
103	Molecular Simulation of CO ₂ Adsorption in the Presence of Water in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 13479-13491.	3.1	70
104	Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale. Langmuir, 2013, 29, 14519-14526.	3.5	12
105	Structural Modelling of Silicon Carbide-Derived Nanoporous Carbon by Hybrid Reverse Monte Carlo Simulation. Journal of Physical Chemistry C, 2013, 117, 14081-14094.	3.1	60
106	Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing. Processes, 2013, 1, 49-66.	2.8	6
107	Multicomponent Effective Medium–Correlated Random Walk Theory for the Diffusion of Fluid Mixtures through Porous Media. Langmuir, 2012, 28, 517-533.	3.5	12
108	On the non-equilibrium nature of the nanopore fluid. Molecular Simulation, 2012, 38, 1251-1264.	2.0	1

#	Article	IF	CITATIONS
109	Accessibility of Gases and Liquids in Carbons. , 2012, , 37-60.		0
110	Some Anomalies in the Self-Diffusion of Water in Disordered Carbons. Journal of Physical Chemistry C, 2012, 116, 3667-3676.	3.1	32
111	Computational fluid dynamics applied to high temperature hydrogen separation membranes. Frontiers of Chemical Science and Engineering, 2012, 6, 3-12.	4.4	24
112	Kinetics of the Dehydroxylation of Serpentine. Energy & amp; Fuels, 2012, 26, 783-790.	5.1	26
113	Lattice Boltzmann Simulation of Conjugate Heat Transfer from Multiple Heated Obstacles Mounted in a Walled Parallel Plate Channel. Numerical Heat Transfer; Part A: Applications, 2012, 62, 798-821.	2.1	30
114	Adsorption and Diffusion of Methane in Silica Nanopores: A Comparison of Single-Site and Five-Site Models. Journal of Physical Chemistry C, 2012, 116, 2344-2355.	3.1	22
115	Characterization of accessible and inaccessible pores in microporous carbons by a combination of adsorption and small angle neutron scattering. Carbon, 2012, 50, 3045-3054.	10.3	35
116	The transport of gases in macroporous α-alumina supports. Journal of Membrane Science, 2012, 409-410, 24-33.	8.2	15
117	Kinetic modelling of molecular hydrogen transport in microporous carbon materials. Physical Chemistry Chemical Physics, 2011, 13, 7834.	2.8	29
118	Modeling Self-Diffusion of Simple Fluids in Nanopores. Journal of Physical Chemistry B, 2011, 115, 11700-11711.	2.6	15
119	How Water Adsorbs in Hydrophobic Nanospaces. Journal of Physical Chemistry C, 2011, 115, 16606-16612.	3.1	54
120	Potential of Silicon Carbide-Derived Carbon for Carbon Capture. Industrial & Engineering Chemistry Research, 2011, 50, 10380-10383.	3.7	27
121	Molecular transport in nanopores: a theoretical perspective. Physical Chemistry Chemical Physics, 2011, 13, 15350.	2.8	137
122	The low-density diffusion coefficient of soft-sphere fluids in nanopores: Accurate correlations from exact theory and criteria for applicability of the Knudsen model. Journal of Membrane Science, 2011, 382, 339-339.	8.2	23
123	Effect of dead volume on performance of simulated moving bed process. Adsorption, 2011, 17, 109-120.	3.0	15
124	Some pitfalls in the use of the Knudsen equation in modelling diffusion in nanoporous materials. Chemical Engineering Science, 2011, 66, 284-293.	3.8	80
125	Simulation of methane permeability in carbon slit pores. Journal of Membrane Science, 2011, 369, 319-328.	8.2	16
126	Comments on "Diffusion in a mesoporous silica membrane: Validity of the Knudsen diffusion modelâ€ , by Ruthven, D.M., et al., Chem. Eng. Sci. 64 (2009) 3201–3203. Chemical Engineering Science, 2010, 65, 4519-4520.	3.8	18

#	Article	IF	CITATIONS
127	Prediction of carbon dioxide permeability in carbon slit pores. Journal of Membrane Science, 2010, 355, 186-199.	8.2	28
128	Effect of catalyst loading on kinetics of catalytic degradation of high density polyethylene: Experiment and modelling. Chemical Engineering Science, 2010, 65, 796-806.	3.8	5
129	Heat Treatment-Induced Structural Changes in SiC-Derived Carbons and their Impact on Gas Storage Potential. Journal of Physical Chemistry C, 2010, 114, 16562-16575.	3.1	18
130	Improvement of <i>para</i> -Xylene SMB Process Performance on an Industrial Scale. Industrial & Engineering Chemistry Research, 2010, 49, 3316-3327.	3.7	24
131	Influence of Synthesis Conditions and Heat Treatment on the Structure of Ti3SiC2-Derived Carbons. Journal of Physical Chemistry C, 2010, 114, 1046-1056.	3.1	21
132	Modeling Pure Gas Permeation in Nanoporous Materials and Membranes. Langmuir, 2010, 26, 8373-8385.	3.5	41
133	Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material. Physical Review Letters, 2010, 105, 085901.	7.8	89
134	Simulation of quantum separation of binary hydrogen isotope mixtures in carbon slit pores. Molecular Simulation, 2009, 35, 162-171.	2.0	19
135	Fluid transport in nanospaces. Molecular Simulation, 2009, 35, 109-121.	2.0	14
136	On the Strength of the Hydrogenâ^'Carbon Interaction as Deduced from Physisorption. Langmuir, 2009, 25, 4314-4319.	3.5	29
137	Accessibility of simple gases in disordered carbons: theory and simulation. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 557-562.	1.5	7
138	Quantum Effect-Mediated Hydrogen Isotope Mixture Separation in Slit Pore Nanoporous Materials. Journal of Physical Chemistry C, 2009, 113, 14953-14962.	3.1	27
139	Characterization and Adsorption Modeling of Silicon Carbide-Derived Carbons. Langmuir, 2009, 25, 2121-2132.	3.5	30
140	Influence of Sulfur and Metal Microconstituents on the Reactivity of Carbon Anodes. Energy & Fuels, 2009, 23, 1909-1924.	5.1	30
141	Pore Accessibility of Methane and Carbon Dioxide in Coals. Energy & amp; Fuels, 2009, 23, 3319-3327.	5.1	58
142	Friction based modeling of multicomponent transport at the nanoscale. Journal of Chemical Physics, 2008, 129, 164709.	3.0	23
143	New Method for Atomistic Modeling of the Microstructure of Activated Carbons Using Hybrid Reverse Monte Carlo Simulation. Langmuir, 2008, 24, 7912-7922.	3.5	114
144	Catalytic Degradation of High-Density Polyethylene in a Reactive Extruder. Industrial & Engineering Chemistry Research, 2008, 47, 5175-5181.	3.7	10

#	Article	IF	CITATIONS
145	Kinetic Restriction of Simple Gases in Porous Carbons:  Transition-State Theory Study. Langmuir, 2008, 24, 146-154.	3.5	56
146	ls Kinetic Molecular Sieving of Hydrogen Isotopes Feasible?. Journal of Physical Chemistry C, 2008, 112, 11421-11426.	3.1	34
147	Crystalline Structure Transformation of Carbon Anodes during Gasification. Energy & Fuels, 2008, 22, 1902-1910.	5.1	25
148	Modeling Mixture Transport at the Nanoscale: Departure from Existing Paradigms. Physical Review Letters, 2008, 100, 236103.	7.8	32
149	Anomalous transport in molecularly confined spaces. Journal of Chemical Physics, 2007, 127, 124701.	3.0	21
150	The structure of high-pressure adsorbed fluids in slit-pores. Studies in Surface Science and Catalysis, 2007, , 503-509.	1.5	3
151	Role of Electrostatic Effects in the Pure Component and Binary Adsorption of Ethylene and Ethane in Cu-Tricarboxylate Metal-Organic Frameworks. Adsorption Science and Technology, 2007, 25, 607-619.	3.2	16
152	Air Reactivity of Petroleum Cokes:Â Role of Inaccessible Porosity. Industrial & Engineering Chemistry Research, 2007, 46, 3265-3274.	3.7	21
153	Single-Walled Carbon Nanotubes:  Efficient Nanomaterials for Separation and On-Board Vehicle Storage of Hydrogen and Methane Mixture at Room Temperature?. Journal of Physical Chemistry C, 2007, 111, 5250-5257.	3.1	59
154	Determination of Pore Accessibility in Disordered Nanoporous Materials. Journal of Physical Chemistry C, 2007, 111, 2212-2222.	3.1	63
155	Modelling of hydrolysis controlled anaerobic digestion. Journal of Chemical Technology and Biotechnology, 2007, 53, 337-344.	3.2	29
156	Thermodynamics of Hydrogen Adsorption in Slit-like Carbon Nanopores at 77 K. Classical versus Path-Integral Monte Carlo Simulations. Langmuir, 2007, 23, 3666-3672.	3.5	56
157	Feasibility of tailoring for high isosteric heat to improve effectiveness of hydrogen storage in carbons. Carbon, 2007, 45, 1043-1050.	10.3	41
158	Thermal degradation of high density polyethylene in a reactive extruder. Polymer Degradation and Stability, 2007, 92, 1721-1729.	5.8	43
159	Quantum effect induced kinetic molecular sieving of hydrogen and deuterium in microporous materials. Adsorption, 2007, 13, 501-508.	3.0	42
160	Pore accessibility of N2 and Ar in disordered nanoporous solids: theory and experiment. Adsorption, 2007, 13, 307-314.	3.0	8
161	High-Pressure Adsorption of Methane and Carbon Dioxide on Coal. Energy & Fuels, 2006, 20, 2599-2607.	5.1	255
162	Analytical Solution of Forced Convection in a Duct of Rectangular Cross Section Saturated by a Porous Medium. Journal of Heat Transfer, 2006, 128, 596-600.	2.1	51

#	Article	IF	CITATIONS
163	Hybrid Reverse Monte Carlo Reconstruction and Simulation Studies. , 2006, , .		0
164	Electrostatically Mediated Specific Adsorption of Small Molecules in Metallo-Organic Frameworks. Journal of Physical Chemistry B, 2006, 110, 24834-24836.	2.6	48
165	Optimum Conditions for Adsorptive Storage. Langmuir, 2006, 22, 1688-1700.	3.5	936
166	Optimization of Slitlike Carbon Nanopores for Storage of hythane Fuel at Ambient Temperatures. Journal of Physical Chemistry B, 2006, 110, 23770-23776.	2.6	21
167	Structure of saccharose-based carbon and transport of confined fluids: hybrid reverse Monte Carlo reconstruction and simulation studies. Molecular Simulation, 2006, 32, 567-577.	2.0	47
168	Mechanisms Influencing Levitation and the Scaling Laws in Nanopores:  Oscillator Model Theory. Journal of Physical Chemistry B, 2006, 110, 3109-3113.	2.6	25
169	Quantum Effects on Adsorption and Diffusion of Hydrogen and Deuterium in Microporous Materials. Journal of Physical Chemistry B, 2006, 110, 16666-16671.	2.6	138
170	Influence of Adsorbate Interaction on Transport in Confined Spaces. Adsorption Science and Technology, 2006, 24, 101-116.	3.2	9
171	Characterization of heat-treated porous carbons using argon adsorption. Carbon, 2006, 44, 646-652.	10.3	13
172	Scattering and tangential momentum accommodation at a 2D adsorbate–solid interface. Journal of Membrane Science, 2006, 275, 244-254.	8.2	8
173	Kinetic study of the thermal degradation of high density polyethylene. Polymer Degradation and Stability, 2006, 91, 1476-1483.	5.8	28
174	Transport of simple fluids in nanopores: Theory and simulation. AICHE Journal, 2006, 52, 29-38.	3.6	54
175	Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons. AICHE Journal, 2006, 52, 957-967.	3.6	157
176	Quantum Mediated Reverse Kinetic Molecular Seiving in Microporous Materials. , 2006, , .		0
177	Towards Determining the Interaction of Fluids with Nanostructured Carbons. , 2006, , .		0
178	Momentum Transfer Effects in the Transport of Adsorbate at a Nano-Patterned Surface. Adsorption Science and Technology, 2005, 23, 633-642.	3.2	2
179	Diffusion of n-decane in mesoporous MCM-41 silicas. Microporous and Mesoporous Materials, 2005, 86, 112-123.	4.4	21
180	Characterization of activated carbon fibers using argon adsorption. Carbon, 2005, 43, 775-785.	10.3	36

#	Article	IF	CITATIONS
181	Adsorbate Transport in Nanopores. Adsorption, 2005, 11, 443-447.	3.0	3
182	Quantum Effect Induced Reverse Kinetic Molecular Sieving in Microporous Materials. Physical Review Letters, 2005, 95, 245901.	7.8	108
183	Effects of the Juxtaposition of Carbonaceous Slit Pores on the Overall Transport Behavior of Adsorbed Fluids. Langmuir, 2005, 21, 229-239.	3.5	5
184	A Heterogeneous Model for Gas Transport in Carbon Molecular Sieves. Langmuir, 2005, 21, 674-681.	3.5	9
185	Diffusion of Linear Paraffins in Nanoporous Silica. Industrial & Engineering Chemistry Research, 2005, 44, 6477-6484.	3.7	17
186	Prediction of High-Pressure Adsorption Equilibrium of Supercritical Gases Using Density Functional Theory. Langmuir, 2005, 21, 3187-3197.	3.5	54
187	Comparisons of diffusive and viscous contributions to transport coefficients of light gases in single-walled carbon nanotubes. Molecular Simulation, 2005, 31, 643-649.	2.0	79
188	Tractable molecular theory of transport of Lennard-Jones fluids in nanopores. Journal of Chemical Physics, 2004, 120, 4472-4485.	3.0	90
189	Probing the Pore Wall Structure of Nanoporous Carbons Using Adsorption. Langmuir, 2004, 20, 3532-3535.	3.5	52
190	Modeling molecular transport in slit pores. Journal of Chemical Physics, 2004, 120, 5396-5406.	3.0	57
191	High-Pressure Adsorption Capacity and Structure of CO2in Carbon Slit Pores:Â Theory and Simulation. Langmuir, 2004, 20, 9612-9620.	3.5	53
192	Study of Hexane Adsorption in Nanoporous MCM-41 Silica. Langmuir, 2004, 20, 389-395.	3.5	94
193	Comparative Analysis of Structural and Morphological Properties of Large-Pore Periodic Mesoporous Organosilicas and Pure Silicas. Journal of Physical Chemistry B, 2004, 108, 16441-16450.	2.6	33
194	Characterization of Pore Wall Heterogeneity in Nanoporous Carbons Using Adsorption:  the Slit Pore Model Revisited. Journal of Physical Chemistry B, 2004, 108, 14032-14042.	2.6	50
195	Hydrodynamic Origin of Diffusion in Nanopores. Physical Review Letters, 2003, 90, 016105.	7.8	74
196	Wall Mediated Transport in Confined Spaces: Exact Theory for Low Density. Physical Review Letters, 2003, 91, 126102.	7.8	105
197	Effect of pore-network connectivity on multicomponent adsorption of large molecules. AICHE Journal, 2003, 49, 65-81.	3.6	2
198	Dryout phenomena in a three-phase fixed-bed reactor. AICHE Journal, 2003, 49, 225-231.	3.6	8

#	Article	IF	CITATIONS
199	Analysis of multicomponent adsorption kinetics on activated carbon. AICHE Journal, 2003, 49, 883-895.	3.6	12
200	Variation of the pore structure of coal chars during gasification. Carbon, 2003, 41, 507-523.	10.3	187
201	Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous and Mesoporous Materials, 2003, 65, 287-298.	4.4	69
202	Solubility of selected esters in supercritical carbon dioxide. Journal of Supercritical Fluids, 2003, 27, 1-11.	3.2	42
203	Activation Energy Distribution of Thermal Annealing of a Bituminous Coal. Energy & Fuels, 2003, 17, 399-404.	5.1	20
204	Variation of the Crystalline Structure of Coal Char during Gasification. Energy & Fuels, 2003, 17, 744-754.	5.1	88
205	Method for determining the shear stress in cylindrical systems. Physical Review E, 2003, 67, 041206.	2.1	7
206	Molecular transport in nanopores. Journal of Chemical Physics, 2003, 119, 1719-1730.	3.0	66
207	Close packed transitions in slit-shaped pores: Density functional theory study of methane adsorption capacity in carbon. Journal of Chemical Physics, 2002, 117, 10827-10836.	3.0	22
208	Percolation Phenomena in Micropore Adsorption: Influence on Single and Multicomponent Adsorption Equilibria. Studies in Surface Science and Catalysis, 2002, 144, 123-130.	1.5	0
209	Density Functional Theory Analysis of the Influence of Pore Wall Heterogeneity on Adsorption in Carbons. Langmuir, 2002, 18, 6845-6856.	3.5	62
210	Vacancy solution theory for binary adsorption equilibria in heterogeneous carbon. AICHE Journal, 2002, 48, 1938-1956.	3.6	5
211	Use of liquid phase adsorption for characterizing pore network connectivity in activated carbon. Applied Surface Science, 2002, 196, 281-295.	6.1	4
212	On the validity of thermogravimetric determination of carbon gasification kinetics. Chemical Engineering Science, 2002, 57, 2907-2920.	3.8	45
213	Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon, 2002, 40, 481-496.	10.3	178
214	Ab initio modelling of basal plane oxidation of graphenes and implications for modelling char combustion. Carbon, 2002, 40, 2341-2349.	10.3	42
215	Kinetics of adsorption on activated carbon: application of heterogeneous vacancy solution theory. Chemical Engineering Science, 2002, 57, 3909-3928.	3.8	39
216	A Modified Pore-Filling Isotherm for Liquid-Phase Adsorption in Activated Carbon. Langmuir, 2001, 17, 1488-1498.	3.5	75

#	Article	IF	CITATIONS
217	Solution techniques for transport problems involving steep concentration gradients: application to noncatalytic fluid solid reactions. Computers and Chemical Engineering, 2001, 25, 1159-1168.	3.8	10
218	A wavelet-based adaptive technique for adsorption problems involving steep gradients. Computers and Chemical Engineering, 2001, 25, 1611-1619.	3.8	6
219	The Use of Liquid Phase Adsorption Isotherms for Characterization of Activated Carbons. Journal of Colloid and Interface Science, 2001, 244, 319-335.	9.4	10
220	Vacancy solution theory of adsorption revisited. AICHE Journal, 2001, 47, 2136-2138.	3.6	22
221	Characterization of activated carbons using liquid phase adsorption. Carbon, 2001, 39, 1237-1250.	10.3	54
222	Application of heterogeneous vacancy solution theory to characterization of microporous solids. Carbon, 2001, 39, 2215-2229.	10.3	14
223	A generalised dynamic model for char particle gasification with structure evolution and peripheral fragmentation. Chemical Engineering Science, 2001, 56, 3683-3697.	3.8	51
224	Application of Petrov–Galerkin methods to transient boundary value problems in chemical engineering: adsorption with steep gradients in bidisperse solids. Chemical Engineering Science, 2001, 56, 3727-3735.	3.8	21
225	Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 2001, 40, 3237-3261.	3.7	462
226	CHARACTERISATION OF MCM-41 USING REGULARIZATION. , 2000, , .		0
227	Adsorption of flavour esters on granular activated carbon. Canadian Journal of Chemical Engineering, 2000, 78, 892-901.	1.7	29
228	A modified discrete random pore model allowing for different initial surface reactivity. Carbon, 2000, 38, 47-58.	10.3	36
229	Determination of activation energy distributions for chemisorption of oxygen on carbon: an improved approach. Chemical Engineering Science, 2000, 55, 6187-6196.	3.8	18
230	Numerical solution of hyperbolic models of transport in bidisperse solids. Computers and Chemical Engineering, 2000, 24, 1981-1995.	3.8	10
231	A model for adsorption of condensable vapors on nonporous materials. Separation and Purification Technology, 2000, 20, 25-39.	7.9	7
232	Adsorption Hysteresis and Criticality in Regular Mesoporous Materials. Studies in Surface Science and Catalysis, 2000, 128, 187-196.	1.5	1
233	Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms. Journal of Physical Chemistry B, 2000, 104, 9099-9110.	2.6	91
234	Investigation of Network Connectivity in Activated Carbons by Liquid Phase Adsorption. Langmuir, 2000, 16, 9303-9313.	3.5	32

#	Article	IF	CITATIONS
235	Percolative Fragmentation of Char Particles during Gasification. Energy & amp; Fuels, 2000, 14, 297-307.	5.1	29
236	Effect of Pore Blockage on Adsorption Isotherms and Dynamics: Anomalous Adsorption of Iodine on Activated Carbon. Langmuir, 2000, 16, 4001-4008.	3.5	30
237	CHARACTERIZATION OF PORE STRUCTURE OF ACTIVATED CARBON BY GAS AND LIQUID PHASE ADSORPTION., 2000, , .		0
238	A MODEL FOR ADSORPTION OF CONDENSABLE VAPORS ON NONPOROUS MATERIALS. , 2000, , .		0
239	Computationally efficient solution techniques for adsorption problems involving steep gradients in bidisperse particles. Computers and Chemical Engineering, 1999, 23, 933-943.	3.8	24
240	Analysis of Criticality and Isotherm Reversibility in Regular Mesoporous Materials. Langmuir, 1999, 15, 5347-5354.	3.5	43
241	Structural Characterization of MCM-41 over a Wide Range of Length Scales. Langmuir, 1999, 15, 2809-2816.	3.5	43
242	Characterization of Surface Roughness of MCM-41 Using Methods of Fractal Analysis. Langmuir, 1999, 15, 4603-4612.	3.5	51
243	Structural analysis of microporous carbons by nonane preadsorption. Carbon, 1998, 36, 1866-1869.	10.3	3
244	Modelling of heat transfer in fluidized-bed coating of thin plates. Chemical Engineering Science, 1998, 53, 1307-1310.	3.8	5
245	Determination of pore size distributions by regularization and finite element collocation. Chemical Engineering Science, 1998, 53, 3239-3249.	3.8	20
246	Adsorption in mesopores. Chemical Engineering Science, 1998, 53, 3143-3156.	3.8	66
247	Reactivity of chars and carbons: New insights through molecular modeling. AICHE Journal, 1998, 44, 2478-2493.	3.6	18
248	Solution of adsorption problems involving steep moving profiles. Computers and Chemical Engineering, 1998, 22, 893-896.	3.8	8
249	Experimental and Theoretical Investigations of Adsorption Hysteresis and Criticality in MCM-41:Â Studies with O2, Ar, and CO2â€. Industrial & Engineering Chemistry Research, 1998, 37, 2271-2283.	3.7	103
250	Adsorption of Benzene and Ethanol on MCM-41 Material. Langmuir, 1998, 14, 4950-4952.	3.5	57
251	Capillary Coexistence and Criticality in Mesopores:Â Modification of the Kelvin Theory. Langmuir, 1998, 14, 1521-1524.	3.5	43
252	Adsorption of Binary Hydrocarbon Mixtures in Carbon Slit Pores:Â A Density Functional Theory Study. Langmuir, 1998, 14, 6231-6240.	3.5	35

#	Article	IF	CITATIONS
253	HYSTERESIS AND PHASE TRANSITIONS IN A SINGLE PARTIALLY INTERNALLY WETTED CATALYST PELLET: THERMOGRAVIMETRIC STUDIES. Chemical Engineering Communications, 1997, 157, 109-133.	2.6	3
254	Transport in bidisperse adsorbents: significance of the macroscopic adsorbate flux. Chemical Engineering Science, 1997, 52, 1377-1386.	3.8	22
255	Formation and Aggregation of Polymorphs in Continuous Precipitation. 1. Mathematical Modeling. Industrial & Engineering Chemistry Research, 1996, 35, 1985-1994.	3.7	11
256	CAPILLARY NETWORK MODELS FOR TRANSPORT IN PACKED BEDS: CONSIDERATIONS OF PORE ASPECT RATIO. Chemical Engineering Communications, 1996, 154, 183-202.	2.6	11
257	Formation and Aggregation of Polymorphs in Continuous Precipitation. 2. Kinetics of CaCO3Precipitation. Industrial & Engineering Chemistry Research, 1996, 35, 1995-2006.	3.7	50
258	Reaction rate hysteresis in a single partially internally wetted catalyst pellet: Experiment and modellng. Chemical Engineering Science, 1996, 51, 1241-1256.	3.8	12
259	Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture. Chemical Engineering Science, 1996, 51, 587-601.	3.8	18
260	Reaction of microporous solids: The discrete random pore model. Carbon, 1996, 34, 1383-1391.	10.3	54
261	Simulation of reaction and transport in catalyst particles with partial external and internal wetting. International Journal of Heat and Mass Transfer, 1995, 38, 1443-1455.	4.8	5
262	Combined surface and viscous flow of condensable vapor in porous media. Chemical Engineering Science, 1995, 50, 167-182.	3.8	26
263	Solution of transient problems with steep gradients: Novel front-tracking strategy. Chemical Engineering Science, 1995, 50, 2793-2799.	3.8	19
264	Determination of concentration-dependent adsorbate diffusivities by numerical inversion. Chemical Engineering Science, 1995, 50, 1361-1372.	3.8	18
265	Transport in capillary network models of porous media: theory and simulation. Chemical Engineering Science, 1994, 49, 245-257.	3.8	31
266	Transport of adsorbates in microporous solids: arbitrary isotherm. Proceedings of the Royal Society A, 1994, 446, 15-37.	0.9	10
267	Steady-State Transitions and Polymorph Transformations in Continuous Precipitation of Calcium Carbonate. Industrial & Engineering Chemistry Research, 1994, 33, 2187-2197.	3.7	71
268	A Modified Pore Filling Isotherm with Application in Determination of Pore Size Distributions. Langmuir, 1994, 10, 3230-3243.	3.5	26
269	Interpretation of Adsorption Isotherms at Above-Critical Temperatures Using a Modified Micropore Filling Model. Langmuir, 1994, 10, 870-876.	3.5	17
270	Growth rate dispersion in MSMRP crystallizers: Solution by regularization. Chemical Engineering Science, 1993, 48, 3405-3415.	3.8	3

#	Article	IF	CITATIONS
271	Kinetics of solid state reaction between barium carbonate and cupric oxide. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1992, 23, 493-503.	0.4	2
272	Modified MWR approach: Application to agglomerative precipitation. AICHE Journal, 1992, 38, 868-878.	3.6	19
273	Axial transport of granular solids in horizontal rotating cylinders. Part 1: Theory. Powder Technology, 1991, 67, 145-151.	4.2	55
274	Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system. Powder Technology, 1991, 67, 153-162.	4.2	48
275	On the concentration dependence of surface diffusion coefficients in capillary porous materials. Proceedings of the Royal Society A, 1991, 434, 317-340.	0.9	6
276	Stereospecific synthesis of ether phospholipids. Preparation of 1-octadecyl-2-alkylaminodeoxyglycerophosphocholines. Tetrahedron Letters, 1991, 32, 6521-6524.	1.4	7
277	Solution of cyclic profiles in catalytic reactor operation with periodic flow reversal. Computers and Chemical Engineering, 1991, 15, 229-237.	3.8	40
278	Modelling of sorption of gaseous sorbates in bidispersed structured solids. Separation and Purification Technology, 1991, 5, 49-55.	0.3	7
279	Stereospecific synthesis of antitumor active thioether PAF analogs. Lipids, 1991, 26, 1424-1430.	1.7	7
280	Perturbation analysis of gas—solid reactions—I. Solid of low initial permeability. Chemical Engineering Science, 1991, 46, 173-182.	3.8	12
281	Analysis of catalytic reactor operation with periodic flow reversal. Chemical Engineering Science, 1991, 46, 361-367.	3.8	37
282	Axial segregation of particles in a horizontal rotating cylinder. Chemical Engineering Science, 1991, 46, 1513-1517.	3.8	127
283	Partial internal wetting of catalyst particles: Hysteresis effects. AICHE Journal, 1991, 37, 650-660.	3.6	28
284	Perturbation analysis of gas—solid reactions—II. Reduction to the diffusion-controlled shrinking core. Chemical Engineering Science, 1991, 46, 1465-1474.	3.8	10
285	MULTIPLICITY AND STABILITY ANALYSIS OF AGGLOMERATION CONTROLLED PRECIPITATION. Chemical Engineering Communications, 1991, 104, 227-244.	2.6	5
286	EFFECTIVE DIFFUSIVITY OF PHENOL IN ACTIVATED CARBON. Chemical Engineering Communications, 1990, 98, 139-154.	2.6	17
287	Stereospecific Synthesis of 2-Substituted Ether Phospholipids. Synthesis, 1989, 1989, 16-20.	2.3	23
288	Partial internal wetting of catalyst particles with a distribution of pore size. AICHE Journal, 1989, 35, 1337-1345.	3.6	13

#	Article	IF	CITATIONS
289	Dynamics of continuous precipitation under non-stoichiometric conditions. Chemical Engineering Science, 1989, 44, 751-762.	3.8	9
290	Steady state multiplicity and partial internal wetting of catalyst particles. AICHE Journal, 1988, 34, 969-979.	3.6	17
291	Combined surface and pore volume diffusion in porous media. AICHE Journal, 1988, 34, 1094-1105.	3.6	15
292	A new approach to the synthesis of thioether phospholipids. Preparation of 1-thiohexadecyl-2-N-acylaminodeoxyglycerophosphocholines. Tetrahedron Letters, 1988, 29, 31-34.	1.4	23
293	Stereospecific synthesis of ether and thioether phospholipids. The use of L-glyceric acid as a chiral phospholipid precursor. Journal of Organic Chemistry, 1988, 53, 5034-5039.	3.2	37
294	Stereospecific synthesis of 2-thiophosphatidylcholines; A new class of biologically active phospholipid analogues. Tetrahedron Letters, 1987, 28, 3767-3770.	1.4	7
295	On the apparently quasi-steady catalytic surface. Chemical Engineering Science, 1987, 42, 2972-2974.	3.8	2
296	Modeling the pore structure of coal. AICHE Journal, 1987, 33, 1707-1718.	3.6	58
297	Stereospecific synthesis of PAF analogues. Preparation of 1-hexadecyl 2-thioacetyl-2-deoxyglycerophosphocholine (2-ThioPAF). Tetrahedron Letters, 1987, 28, 1729-1731.	1.4	15
298	A new approach to the synthesis of ether phospholipids. Preparation of 1,2-dialkylglycerophosphorylcholines from L-glyceric acid. Tetrahedron Letters, 1987, 28, 271-274.	1.4	22
299	Stochastic theory of transport in inhomogeneous media. Chemical Engineering Science, 1986, 41, 1311-1324.	3.8	63
300	Directional autocorrelation and the diffusional tortuosity of capillary porous media. Journal of Catalysis, 1985, 93, 192-196.	6.2	32
301	On the pseudo steady state hypothesis for fluid solid reactions. Chemical Engineering Science, 1985, 40, 869-872.	3.8	12
302	Analysis of distributed pore closure in gas-solid reactions. AICHE Journal, 1985, 31, 642-648.	3.6	26
303	Effect of the product layer on the kinetics of the CO2-lime reaction. AICHE Journal, 1983, 29, 79-86.	3.6	559
304	Unified treatment of structural effects in fluid-solid reactions. AICHE Journal, 1983, 29, 281-289.	3.6	43
305	The effect of pore structure on fluid-solid reactions: Application to the SO2-lime reaction. AICHE Journal, 1981, 27, 226-234.	3.6	194
306	A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AICHE Journal, 1981, 27, 247-254.	3.6	416

#	Article	IF	CITATIONS
307	A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AICHE Journal, 1980, 26, 379-386.	3.6	1,046
308	A population balance approach to the modeling of solid phase reactions. AICHE Journal, 1979, 25, 298-306.	3.6	16