Suresh Bhatia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258336/publications.pdf

Version: 2024-02-01

36303 36028 12,476 308 51 citations h-index papers

g-index 315 315 315 8775 docs citations times ranked citing authors all docs

97

#	Article	IF	CITATIONS
1	A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AICHE Journal, 1980, 26, 379-386.	3.6	1,046
2	Optimum Conditions for Adsorptive Storage. Langmuir, 2006, 22, 1688-1700.	3.5	936
3	Effect of the product layer on the kinetics of the CO2-lime reaction. AICHE Journal, 1983, 29, 79-86.	3.6	559
4	Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 2001, 40, 3237-3261.	3.7	462
5	A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AICHE Journal, 1981, 27, 247-254.	3.6	416
6	High-Pressure Adsorption of Methane and Carbon Dioxide on Coal. Energy & Samp; Fuels, 2006, 20, 2599-2607.	5.1	255
7	The effect of pore structure on fluid-solid reactions: Application to the SO2-lime reaction. AICHE Journal, 1981, 27, 226-234.	3.6	194
8	Variation of the pore structure of coal chars during gasification. Carbon, 2003, 41, 507-523.	10.3	187
9	Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon, 2002, 40, 481-496.	10.3	178
10	Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons. AICHE Journal, 2006, 52, 957-967.	3.6	157
11	Quantum Effects on Adsorption and Diffusion of Hydrogen and Deuterium in Microporous Materials. Journal of Physical Chemistry B, 2006, 110, 16666-16671.	2.6	138
12	Molecular transport in nanopores: a theoretical perspective. Physical Chemistry Chemical Physics, 2011, 13, 15350.	2.8	137
13	Axial segregation of particles in a horizontal rotating cylinder. Chemical Engineering Science, 1991, 46, 1513-1517.	3.8	127
14	New Method for Atomistic Modeling of the Microstructure of Activated Carbons Using Hybrid Reverse Monte Carlo Simulation. Langmuir, 2008, 24, 7912-7922.	3.5	114
15	Quantum Effect Induced Reverse Kinetic Molecular Sieving in Microporous Materials. Physical Review Letters, 2005, 95, 245901.	7.8	108
16	Wall Mediated Transport in Confined Spaces: Exact Theory for Low Density. Physical Review Letters, 2003, 91, 126102.	7.8	105
17	Experimental and Theoretical Investigations of Adsorption Hysteresis and Criticality in MCM-41:Â Studies with O2, Ar, and CO2â€. Industrial & Engineering Chemistry Research, 1998, 37, 2271-2283.	3.7	103
18	Study of Hexane Adsorption in Nanoporous MCM-41 Silica. Langmuir, 2004, 20, 389-395.	3.5	94

#	Article	IF	CITATIONS
19	Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms. Journal of Physical Chemistry B, 2000, 104, 9099-9110.	2.6	91
20	Tractable molecular theory of transport of Lennard-Jones fluids in nanopores. Journal of Chemical Physics, 2004, 120, 4472-4485.	3.0	90
21	Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material. Physical Review Letters, 2010, 105, 085901.	7.8	89
22	Variation of the Crystalline Structure of Coal Char during Gasification. Energy & Samp; Fuels, 2003, 17, 744-754.	5.1	88
23	Some pitfalls in the use of the Knudsen equation in modelling diffusion in nanoporous materials. Chemical Engineering Science, 2011, 66, 284-293.	3.8	80
24	Comparisons of diffusive and viscous contributions to transport coefficients of light gases in single-walled carbon nanotubes. Molecular Simulation, 2005, 31, 643-649.	2.0	79
25	A Modified Pore-Filling Isotherm for Liquid-Phase Adsorption in Activated Carbon. Langmuir, 2001, 17, 1488-1498.	3.5	75
26	Hydrodynamic Origin of Diffusion in Nanopores. Physical Review Letters, 2003, 90, 016105.	7.8	74
27	Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study. Chemical Engineering Science, 2015, 121, 268-278.	3.8	74
28	Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes. Journal of Membrane Science, 2019, 587, 117157.	8.2	74
29	Steady-State Transitions and Polymorph Transformations in Continuous Precipitation of Calcium Carbonate. Industrial & Engineering Chemistry Research, 1994, 33, 2187-2197.	3.7	71
30	Molecular Simulation of CO ₂ Adsorption in the Presence of Water in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 13479-13491.	3.1	70
31	Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous and Mesoporous Materials, 2003, 65, 287-298.	4.4	69
32	Adsorption in mesopores. Chemical Engineering Science, 1998, 53, 3143-3156.	3.8	66
33	Molecular transport in nanopores. Journal of Chemical Physics, 2003, 119, 1719-1730.	3.0	66
34	Stochastic theory of transport in inhomogeneous media. Chemical Engineering Science, 1986, 41, 1311-1324.	3.8	63
35	Determination of Pore Accessibility in Disordered Nanoporous Materials. Journal of Physical Chemistry C, 2007, 111, 2212-2222.	3.1	63
36	Density Functional Theory Analysis of the Influence of Pore Wall Heterogeneity on Adsorption in Carbons. Langmuir, 2002, 18, 6845-6856.	3.5	62

#	Article	IF	CITATIONS
37	Structural Modelling of Silicon Carbide-Derived Nanoporous Carbon by Hybrid Reverse Monte Carlo Simulation. Journal of Physical Chemistry C, 2013, 117, 14081-14094.	3.1	60
38	Single-Walled Carbon Nanotubes:  Efficient Nanomaterials for Separation and On-Board Vehicle Storage of Hydrogen and Methane Mixture at Room Temperature?. Journal of Physical Chemistry C, 2007, 111, 5250-5257.	3.1	59
39	Modeling the pore structure of coal. AICHE Journal, 1987, 33, 1707-1718.	3.6	58
40	Pore Accessibility of Methane and Carbon Dioxide in Coals. Energy & Energy & 2009, 23, 3319-3327.	5.1	58
41	Adsorption of Benzene and Ethanol on MCM-41 Material. Langmuir, 1998, 14, 4950-4952.	3.5	57
42	Modeling molecular transport in slit pores. Journal of Chemical Physics, 2004, 120, 5396-5406.	3.0	57
43	Thermodynamics of Hydrogen Adsorption in Slit-like Carbon Nanopores at 77 K. Classical versus Path-Integral Monte Carlo Simulations. Langmuir, 2007, 23, 3666-3672.	3. 5	56
44	Kinetic Restriction of Simple Gases in Porous Carbons:  Transition-State Theory Study. Langmuir, 2008, 24, 146-154.	3.5	56
45	Axial transport of granular solids in horizontal rotating cylinders. Part 1: Theory. Powder Technology, 1991, 67, 145-151.	4.2	55
46	Reaction of microporous solids: The discrete random pore model. Carbon, 1996, 34, 1383-1391.	10.3	54
47	Characterization of activated carbons using liquid phase adsorption. Carbon, 2001, 39, 1237-1250.	10.3	54
48	Prediction of High-Pressure Adsorption Equilibrium of Supercritical Gases Using Density Functional Theory. Langmuir, 2005, 21, 3187-3197.	3.5	54
49	Transport of simple fluids in nanopores: Theory and simulation. AICHE Journal, 2006, 52, 29-38.	3.6	54
50	How Water Adsorbs in Hydrophobic Nanospaces. Journal of Physical Chemistry C, 2011, 115, 16606-16612.	3.1	54
51	High-Pressure Adsorption Capacity and Structure of CO2in Carbon Slit Pores:Â Theory and Simulation. Langmuir, 2004, 20, 9612-9620.	3.5	53
52	Probing the Pore Wall Structure of Nanoporous Carbons Using Adsorption. Langmuir, 2004, 20, 3532-3535.	3.5	52
53	Characterization of Surface Roughness of MCM-41 Using Methods of Fractal Analysis. Langmuir, 1999, 15, 4603-4612.	3.5	51
54	A generalised dynamic model for char particle gasification with structure evolution and peripheral fragmentation. Chemical Engineering Science, 2001, 56, 3683-3697.	3.8	51

#	Article	IF	Citations
55	Analytical Solution of Forced Convection in a Duct of Rectangular Cross Section Saturated by a Porous Medium. Journal of Heat Transfer, 2006, 128, 596-600.	2.1	51
56	Formation and Aggregation of Polymorphs in Continuous Precipitation. 2. Kinetics of CaCO3Precipitation. Industrial & Engineering Chemistry Research, 1996, 35, 1995-2006.	3.7	50
57	Characterization of Pore Wall Heterogeneity in Nanoporous Carbons Using Adsorption:  the Slit Pore Model Revisited. Journal of Physical Chemistry B, 2004, 108, 14032-14042.	2.6	50
58	Structure and Gas Transport at the Polymerâ€"Zeolite Interface: Insights from Molecular Dynamics Simulations. ACS Applied Materials & Dynamics 10, 5992-6005.	8.0	50
59	Modeling Permeation through Mixed-Matrix Membranes: A Review. Processes, 2018, 6, 172.	2.8	50
60	Sodium ion storage in reduced graphene oxide. Electrochimica Acta, 2016, 214, 319-325.	5.2	49
61	Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system. Powder Technology, 1991, 67, 153-162.	4.2	48
62	Electrostatically Mediated Specific Adsorption of Small Molecules in Metallo-Organic Frameworks. Journal of Physical Chemistry B, 2006, 110, 24834-24836.	2.6	48
63	Structure of saccharose-based carbon and transport of confined fluids: hybrid reverse Monte Carlo reconstruction and simulation studies. Molecular Simulation, 2006, 32, 567-577.	2.0	47
64	Impact of H ₂ O on CO ₂ Separation from Natural Gas: Comparison of Carbon Nanotubes and Disordered Carbon. Journal of Physical Chemistry C, 2015, 119, 407-419.	3.1	47
65	On the validity of thermogravimetric determination of carbon gasification kinetics. Chemical Engineering Science, 2002, 57, 2907-2920.	3.8	45
66	Unified treatment of structural effects in fluid-solid reactions. AICHE Journal, 1983, 29, 281-289.	3.6	43
67	Capillary Coexistence and Criticality in Mesopores:Â Modification of the Kelvin Theory. Langmuir, 1998, 14, 1521-1524.	3.5	43
68	Analysis of Criticality and Isotherm Reversibility in Regular Mesoporous Materials. Langmuir, 1999, 15, 5347-5354.	3.5	43
69	Structural Characterization of MCM-41 over a Wide Range of Length Scales. Langmuir, 1999, 15, 2809-2816.	3.5	43
70	Thermal degradation of high density polyethylene in a reactive extruder. Polymer Degradation and Stability, 2007, 92, 1721-1729.	5.8	43
71	Ab initio modelling of basal plane oxidation of graphenes and implications for modelling char combustion. Carbon, 2002, 40, 2341-2349.	10.3	42
72	Solubility of selected esters in supercritical carbon dioxide. Journal of Supercritical Fluids, 2003, 27, 1-11.	3.2	42

#	Article	IF	CITATIONS
73	Quantum effect induced kinetic molecular sieving of hydrogen and deuterium in microporous materials. Adsorption, 2007, 13, 501-508.	3.0	42
74	Feasibility of tailoring for high isosteric heat to improve effectiveness of hydrogen storage in carbons. Carbon, 2007, 45, 1043-1050.	10.3	41
75	Modeling Pure Gas Permeation in Nanoporous Materials and Membranes. Langmuir, 2010, 26, 8373-8385.	3.5	41
76	Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. Journal of Molecular Liquids, 2018, 265, 53-68.	4.9	41
77	Effect of the CaO sintering on the calcination rate of CaCO ₃ under atmospheres containing CO ₂ . AICHE Journal, 2018, 64, 3638-3648.	3.6	41
78	Solution of cyclic profiles in catalytic reactor operation with periodic flow reversal. Computers and Chemical Engineering, 1991, 15, 229-237.	3.8	40
79	Porphyrin–graphene oxide frameworks for long life sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 13204-13211.	10.3	40
80	Kinetics of adsorption on activated carbon: application of heterogeneous vacancy solution theory. Chemical Engineering Science, 2002, 57, 3909-3928.	3.8	39
81	Theoretical Prediction With Numerical and Experimental Verification to Predict Crosswind Effects on the Performance of Cooling Towers. Heat Transfer Engineering, 2015, 36, 480-487.	1.9	39
82	Kinetic analysis for cyclic CO ₂ capture using lithium orthosilicate sorbents derived from different silicon precursors. Dalton Transactions, 2018, 47, 9038-9050.	3.3	39
83	Interfacial Engineering of MOF-Based Mixed Matrix Membrane through Atomistic Simulations. Journal of Physical Chemistry C, 2020, 124, 594-604.	3.1	39
84	Stereospecific synthesis of ether and thioether phospholipids. The use of L-glyceric acid as a chiral phospholipid precursor. Journal of Organic Chemistry, 1988, 53, 5034-5039.	3.2	37
85	Analysis of catalytic reactor operation with periodic flow reversal. Chemical Engineering Science, 1991, 46, 361-367.	3.8	37
86	Effect of fluorine doping on structure and CO2 adsorption in silicon carbide-derived carbon. Carbon, 2016, 96, 565-577.	10.3	37
87	A modified discrete random pore model allowing for different initial surface reactivity. Carbon, 2000, 38, 47-58.	10.3	36
88	Characterization of activated carbon fibers using argon adsorption. Carbon, 2005, 43, 775-785.	10.3	36
89	Understanding the diffusional tortuosity of porous materials: An effective medium theory perspective. Chemical Engineering Science, 2014, 110, 55-71.	3.8	36
90	Hybrid Reverse Monte Carlo simulation of amorphous carbon: Distinguishing between competing structures obtained using different modeling protocols. Carbon, 2015, 83, 53-70.	10.3	36

#	Article	IF	Citations
91	Adsorption of Binary Hydrocarbon Mixtures in Carbon Slit Pores:Â A Density Functional Theory Study. Langmuir, 1998, 14, 6231-6240.	3.5	35
92	Characterization of accessible and inaccessible pores in microporous carbons by a combination of adsorption and small angle neutron scattering. Carbon, 2012, 50, 3045-3054.	10.3	35
93	Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations. Langmuir, 2017, 33, 936-946.	3.5	35
94	Is Kinetic Molecular Sieving of Hydrogen Isotopes Feasible?. Journal of Physical Chemistry C, 2008, 112, 11421-11426.	3.1	34
95	Comparative Analysis of Structural and Morphological Properties of Large-Pore Periodic Mesoporous Organosilicas and Pure Silicas. Journal of Physical Chemistry B, 2004, 108, 16441-16450.	2.6	33
96	Interfacial Resistance and Length-Dependent Transport Diffusivities in Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 26363-26373.	3.1	33
97	Directional autocorrelation and the diffusional tortuosity of capillary porous media. Journal of Catalysis, 1985, 93, 192-196.	6.2	32
98	Investigation of Network Connectivity in Activated Carbons by Liquid Phase Adsorption. Langmuir, 2000, 16, 9303-9313.	3.5	32
99	Modeling Mixture Transport at the Nanoscale: Departure from Existing Paradigms. Physical Review Letters, 2008, 100, 236103.	7.8	32
100	Some Anomalies in the Self-Diffusion of Water in Disordered Carbons. Journal of Physical Chemistry C, 2012, 116, 3667-3676.	3.1	32
101	Interfacial barriers to gas transport in zeolites: distinguishing internal and external resistances. Physical Chemistry Chemical Physics, 2018, 20, 26386-26395.	2.8	32
102	Transport in capillary network models of porous media: theory and simulation. Chemical Engineering Science, 1994, 49, 245-257.	3.8	31
103	Simulation of binary gas separation through multi-tube molecular sieving membranes at high temperatures. Chemical Engineering Journal, 2013, 218, 394-404.	12.7	31
104	Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction. Journal of Thermal Analysis and Calorimetry, 2020, 141, 373-385.	3.6	31
105	Effect of Pore Blockage on Adsorption Isotherms and Dynamics: Anomalous Adsorption of Iodine on Activated Carbon. Langmuir, 2000, 16, 4001-4008.	3.5	30
106	Characterization and Adsorption Modeling of Silicon Carbide-Derived Carbons. Langmuir, 2009, 25, 2121-2132.	3.5	30
107	Influence of Sulfur and Metal Microconstituents on the Reactivity of Carbon Anodes. Energy & Energy & Fuels, 2009, 23, 1909-1924.	5.1	30
108	Lattice Boltzmann Simulation of Conjugate Heat Transfer from Multiple Heated Obstacles Mounted in a Walled Parallel Plate Channel. Numerical Heat Transfer; Part A: Applications, 2012, 62, 798-821.	2.1	30

#	Article	IF	Citations
109	Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials, 2013, 6, 2662-2688.	2.9	30
110	Influence of Structural Heterogeneity on Diffusion of CH ₄ and CO ₂ in Silicon Carbide-Derived Nanoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 11784-11798.	3.1	30
111	Adsorption of flavour esters on granular activated carbon. Canadian Journal of Chemical Engineering, 2000, 78, 892-901.	1.7	29
112	Percolative Fragmentation of Char Particles during Gasification. Energy & Energy & 2000, 14, 297-307.	5.1	29
113	Modelling of hydrolysis controlled anaerobic digestion. Journal of Chemical Technology and Biotechnology, 2007, 53, 337-344.	3.2	29
114	On the Strength of the Hydrogenâ^'Carbon Interaction as Deduced from Physisorption. Langmuir, 2009, 25, 4314-4319.	3.5	29
115	Kinetic modelling of molecular hydrogen transport in microporous carbon materials. Physical Chemistry Chemical Physics, 2011, 13, 7834.	2.8	29
116	Understanding Adsorption and Transport of Light Gases in Hierarchical Materials Using Molecular Simulation and Effective Medium Theory. Journal of Physical Chemistry C, 2014, 118, 14355-14370.	3.1	29
117	Cavitation in Diesel Fuel Injector Nozzles and its Influence on Atomization and Spray. Chemical Engineering and Technology, 2019, 42, 6-29.	1.5	29
118	Partial internal wetting of catalyst particles: Hysteresis effects. AICHE Journal, 1991, 37, 650-660.	3.6	28
119	Kinetic study of the thermal degradation of high density polyethylene. Polymer Degradation and Stability, 2006, 91, 1476-1483.	5.8	28
120	Prediction of carbon dioxide permeability in carbon slit pores. Journal of Membrane Science, 2010, 355, 186-199.	8.2	28
121	Characterizing Structural Complexity in Disordered Carbons: From the Slit Pore to Atomistic Models. Langmuir, 2017, 33, 831-847.	3.5	28
122	Quantum Effect-Mediated Hydrogen Isotope Mixture Separation in Slit Pore Nanoporous Materials. Journal of Physical Chemistry C, 2009, 113, 14953-14962.	3.1	27
123	Potential of Silicon Carbide-Derived Carbon for Carbon Capture. Industrial & Description of Chemistry Research, 2011, 50, 10380-10383.	3.7	27
124	High Interfacial Barriers at Narrow Carbon Nanotubeâ€"Water Interfaces. Langmuir, 2018, 34, 8099-8111.	3.5	27
125	Analysis of distributed pore closure in gas-solid reactions. AICHE Journal, 1985, 31, 642-648.	3.6	26
126	A Modified Pore Filling Isotherm with Application in Determination of Pore Size Distributions. Langmuir, 1994, 10, 3230-3243.	3.5	26

#	Article	IF	Citations
127	Combined surface and viscous flow of condensable vapor in porous media. Chemical Engineering Science, 1995, 50, 167-182.	3.8	26
128	Kinetics of the Dehydroxylation of Serpentine. Energy & Energy & 2012, 26, 783-790.	5.1	26
129	Mechanisms Influencing Levitation and the Scaling Laws in Nanopores:  Oscillator Model Theory. Journal of Physical Chemistry B, 2006, 110, 3109-3113.	2.6	25
130	Crystalline Structure Transformation of Carbon Anodes during Gasification. Energy &	5.1	25
131	Influence of in-plane Stone–Thrower–Wales defects and edge functionalisation on the adsorption of CO2and H2O on graphene. RSC Advances, 2014, 4, 39576.	3.6	25
132	Slow diffusion of methane in ultra-micropores of silicon carbide-derived carbon. Carbon, 2014, 77, 560-576.	10.3	25
133	Computationally efficient solution techniques for adsorption problems involving steep gradients in bidisperse particles. Computers and Chemical Engineering, 1999, 23, 933-943.	3.8	24
134	Improvement of <i>para</i> -Xylene SMB Process Performance on an Industrial Scale. Industrial & Engineering Chemistry Research, 2010, 49, 3316-3327.	3.7	24
135	Computational fluid dynamics applied to high temperature hydrogen separation membranes. Frontiers of Chemical Science and Engineering, 2012, 6, 3-12.	4.4	24
136	Extending effective medium theory to finite size systems: Theory and simulation for permeation in mixed-matrix membranes. Journal of Membrane Science, 2017, 531, 148-159.	8.2	24
137	A new approach to the synthesis of thioether phospholipids. Preparation of 1-thiohexadecyl-2-N-acylaminodeoxyglycerophosphocholines. Tetrahedron Letters, 1988, 29, 31-34.	1.4	23
138	Stereospecific Synthesis of 2-Substituted Ether Phospholipids. Synthesis, 1989, 1989, 16-20.	2.3	23
139	Friction based modeling of multicomponent transport at the nanoscale. Journal of Chemical Physics, 2008, 129, 164709.	3.0	23
140	The low-density diffusion coefficient of soft-sphere fluids in nanopores: Accurate correlations from exact theory and criteria for applicability of the Knudsen model. Journal of Membrane Science, 2011, 382, 339-339.	8.2	23
141	The transport of gases in a supported mesoporous silica membrane. Journal of Membrane Science, 2013, 438, 90-104.	8.2	23
142	Thermodynamic Resistance to Matter Flow at The Interface of a Porous Membrane. Langmuir, 2016, 32, 3400-3411.	3.5	23
143	Effect of structural anisotropy and pore-network accessibility on fluid transport in nanoporous Ti3SiC2 carbide-derived carbon. Carbon, 2016, 103, 16-27.	10.3	23
144	A new approach to the synthesis of ether phospholipids. Preparation of 1,2-dialkylglycerophosphorylcholines from L-glyceric acid. Tetrahedron Letters, 1987, 28, 271-274.	1.4	22

#	Article	IF	Citations
145	Transport in bidisperse adsorbents: significance of the macroscopic adsorbate flux. Chemical Engineering Science, 1997, 52, 1377-1386.	3.8	22
146	Vacancy solution theory of adsorption revisited. AICHE Journal, 2001, 47, 2136-2138.	3.6	22
147	Close packed transitions in slit-shaped pores: Density functional theory study of methane adsorption capacity in carbon. Journal of Chemical Physics, 2002, 117, 10827-10836.	3.0	22
148	Adsorption and Diffusion of Methane in Silica Nanopores: A Comparison of Single-Site and Five-Site Models. Journal of Physical Chemistry C, 2012, 116, 2344-2355.	3.1	22
149	Pore accessibility of Ti3SiC2-derived carbons. Carbon, 2014, 68, 531-541.	10.3	22
150	The fluid dynamic effect on the driving force for a cobalt oxide silica membrane module at high temperatures. Chemical Engineering Science, 2014, 111, 142-152.	3.8	22
151	Application of Petrov–Galerkin methods to transient boundary value problems in chemical engineering: adsorption with steep gradients in bidisperse solids. Chemical Engineering Science, 2001, 56, 3727-3735.	3.8	21
152	Diffusion of n-decane in mesoporous MCM-41 silicas. Microporous and Mesoporous Materials, 2005, 86, 112-123.	4.4	21
153	Optimization of Slitlike Carbon Nanopores for Storage of hythane Fuel at Ambient Temperatures. Journal of Physical Chemistry B, 2006, 110, 23770-23776.	2.6	21
154	Anomalous transport in molecularly confined spaces. Journal of Chemical Physics, 2007, 127, 124701.	3.0	21
155	Air Reactivity of Petroleum Cokes:Â Role of Inaccessible Porosity. Industrial & Engineering Chemistry Research, 2007, 46, 3265-3274.	3.7	21
156	Influence of Synthesis Conditions and Heat Treatment on the Structure of Ti3SiC2-Derived Carbons. Journal of Physical Chemistry C, 2010, 114, 1046-1056.	3.1	21
157	Adsorption and transport of gases in a supported microporous silica membrane. Journal of Membrane Science, 2014, 460, 46-61.	8.2	21
158	Capacitance Optimization in Nanoscale Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 17573-17584.	3.1	21
159	Barriers to diffusion of CO2 in microporous carbon derived from silicon carbide. Carbon, 2015, 88, 1-15.	10.3	21
160	Lattice Boltzmann Pore Scale Simulation of Natural Convection in a Differentially Heated Enclosure Filled with a Detached or Attached Bidisperse Porous Medium. Transport in Porous Media, 2017, 116, 91-113.	2.6	21
161	Multiscale simulation of gas transport in mixed-matrix membranes with interfacial polymer rigidification. Microporous and Mesoporous Materials, 2020, 296, 109982.	4.4	21
162	Determination of pore size distributions by regularization and finite element collocation. Chemical Engineering Science, 1998, 53, 3239-3249.	3.8	20

#	Article	IF	CITATIONS
163	Activation Energy Distribution of Thermal Annealing of a Bituminous Coal. Energy & E	5.1	20
164	Atomistic Investigation of Mixed-Gas Separation in a Fluorinated Polyimide Membrane. ACS Applied Polymer Materials, 2019, 1, 1359-1371.	4.4	20
165	Modified MWR approach: Application to agglomerative precipitation. AICHE Journal, 1992, 38, 868-878.	3.6	19
166	Solution of transient problems with steep gradients: Novel front-tracking strategy. Chemical Engineering Science, 1995, 50, 2793-2799.	3.8	19
167	Simulation of quantum separation of binary hydrogen isotope mixtures in carbon slit pores. Molecular Simulation, 2009, 35, 162-171.	2.0	19
168	Determination of concentration-dependent adsorbate diffusivities by numerical inversion. Chemical Engineering Science, 1995, 50, 1361-1372.	3.8	18
169	Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture. Chemical Engineering Science, 1996, 51, 587-601.	3.8	18
170	Reactivity of chars and carbons: New insights through molecular modeling. AICHE Journal, 1998, 44, 2478-2493.	3.6	18
171	Determination of activation energy distributions for chemisorption of oxygen on carbon: an improved approach. Chemical Engineering Science, 2000, 55, 6187-6196.	3.8	18
172	Comments on "Diffusion in a mesoporous silica membrane: Validity of the Knudsen diffusion modelâ€, by Ruthven, D.M., et al., Chem. Eng. Sci. 64 (2009) 3201–3203. Chemical Engineering Science, 2010, 65, 4519-4520.	3.8	18
173	Heat Treatment-Induced Structural Changes in SiC-Derived Carbons and their Impact on Gas Storage Potential. Journal of Physical Chemistry C, 2010, 114, 16562-16575.	3.1	18
174	A Comparison Between the Separated Flow Structures Near the Wake of a Bare and a Foam-Covered Circular Cylinder. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	1.5	18
175	Complementary Effects of Pore Accessibility and Decoordination on the Capacitance of Nanoporous Carbon Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 28809-28818.	3.1	18
176	Fluorinated Carbide-Derived Carbon: More Hydrophilic, Yet Apparently More Hydrophobic. Journal of the American Chemical Society, 2015, 137, 5969-5979.	13.7	18
177	On the modeling of the co ₂ â€catalyzed sintering of calcium oxide. AICHE Journal, 2017, 63, 3286-3296.	3.6	18
178	Inhibitory Effect of Adsorbed Water on the Transport of Methane in Carbon Nanotubes. Langmuir, 2017, 33, 6280-6291.	3.5	18
179	Steady state multiplicity and partial internal wetting of catalyst particles. AICHE Journal, 1988, 34, 969-979.	3.6	17
180	EFFECTIVE DIFFUSIVITY OF PHENOL IN ACTIVATED CARBON. Chemical Engineering Communications, 1990, 98, 139-154.	2.6	17

#	Article	IF	Citations
181	Interpretation of Adsorption Isotherms at Above-Critical Temperatures Using a Modified Micropore Filling Model. Langmuir, 1994, 10, 870-876.	3.5	17
182	Diffusion of Linear Paraffins in Nanoporous Silica. Industrial & Engineering Chemistry Research, 2005, 44, 6477-6484.	3.7	17
183	Diffusion in Pore Networks: Effective Self-Diffusivity and the Concept of Tortuosity. Journal of Physical Chemistry C, 2013, 117, 3343-3357.	3.1	17
184	Differences in the adsorption and diffusion behaviour of water and non-polar gases in nanoporous carbon: role of cooperative effects of pore confinement and hydrogen bonding. Molecular Simulation, 2015, 41, 432-445.	2.0	17
185	Particulate Fouling and Challenges of Metal Foam Heat Exchangers. Heat Transfer Engineering, 2017, 38, 730-742.	1.9	17
186	Exceptionally high performance of charged carbon nanotube arrays for CO2 separation from flue gas. Carbon, 2017, 125, 245-257.	10.3	17
187	A population balance approach to the modeling of solid phase reactions. AICHE Journal, 1979, 25, 298-306.	3.6	16
188	Role of Electrostatic Effects in the Pure Component and Binary Adsorption of Ethylene and Ethane in Cu-Tricarboxylate Metal-Organic Frameworks. Adsorption Science and Technology, 2007, 25, 607-619.	3.2	16
189	Simulation of methane permeability in carbon slit pores. Journal of Membrane Science, 2011, 369, 319-328.	8.2	16
190	Stereospecific synthesis of PAF analogues. Preparation of 1-hexadecyl 2-thioacetyl-2-deoxyglycerophosphocholine (2-ThioPAF). Tetrahedron Letters, 1987, 28, 1729-1731.	1.4	15
191	Combined surface and pore volume diffusion in porous media. AICHE Journal, 1988, 34, 1094-1105.	3.6	15
192	Modeling Self-Diffusion of Simple Fluids in Nanopores. Journal of Physical Chemistry B, 2011, 115, 11700-11711.	2.6	15
193	Effect of dead volume on performance of simulated moving bed process. Adsorption, 2011, 17, 109-120.	3.0	15
194	The transport of gases in macroporous \hat{l}_{\pm} -alumina supports. Journal of Membrane Science, 2012, 409-410, 24-33.	8.2	15
195	Effect of pore size on the interfacial resistance of a porous membrane. Journal of Membrane Science, 2017, 524, 738-745.	8.2	15
196	Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation. Chemical Communications, 2018, 54, 9494-9497.	4.1	15
197	Application of heterogeneous vacancy solution theory to characterization of microporous solids. Carbon, 2001, 39, 2215-2229.	10.3	14
198	Fluid transport in nanospaces. Molecular Simulation, 2009, 35, 109-121.	2.0	14

#	Article	IF	Citations
199	Pore-Scale Numerical Experiment on the Effect of the Pertinent Parameters on Heat Flux Splitting at the Boundary of a Porous Medium. Transport in Porous Media, 2013, 98, 631-649.	2.6	14
200	The transport of gases in a mesoporous \hat{I}^3 -alumina supported membrane. Journal of Membrane Science, 2013, 428, 357-370.	8.2	14
201	Edge functionalised & Di-intercalated 555-777 defective bilayer graphene for the adsorption of CO2 and H2O. Applied Surface Science, 2017, 400, 375-390.	6.1	14
202	Computational investigation on CO2 adsorption in titanium carbide-derived carbons with residual titanium. Carbon, 2017, 111, 741-751.	10.3	14
203	Comparison of hollow fiber and flat mixed-matrix membranes: Theory and simulation. Chemical Engineering Science, 2018, 187, 174-188.	3.8	14
204	Enhanced CO ₂ sorption efficiency in amine-functionalised 2D/3D graphene/silica hybrid sorbents. Chemical Communications, 2018, 54, 10586-10589.	4.1	14
205	Partial internal wetting of catalyst particles with a distribution of pore size. AICHE Journal, 1989, 35, 1337-1345.	3.6	13
206	Characterization of heat-treated porous carbons using argon adsorption. Carbon, 2006, 44, 646-652.	10.3	13
207	Defect-Mediated Reduction in Barrier for Helium Tunneling through Functionalized Graphene Nanopores. Journal of Physical Chemistry C, 2015, 119, 20940-20948.	3.1	13
208	Effects of Flange Adsorption Affinity and Membrane Porosity on Interfacial Resistance in Carbon Nanotube Membranes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34706-34717.	8.0	13
209	Carbon dioxide adsorption through carbon adsorbent structures: Effect of the porosity size, chemical potential and temperature. Computational Materials Science, 2018, 151, 255-272.	3.0	13
210	Water pool boiling across low pore density aluminum foams. Heat Transfer Engineering, 2020, 41, 1673-1682.	1.9	13
211	On the pseudo steady state hypothesis for fluid solid reactions. Chemical Engineering Science, 1985, 40, 869-872.	3.8	12
212	Perturbation analysis of gasâ€"solid reactionsâ€"I. Solid of low initial permeability. Chemical Engineering Science, 1991, 46, 173-182.	3.8	12
213	Reaction rate hysteresis in a single partially internally wetted catalyst pellet: Experiment and modellng. Chemical Engineering Science, 1996, 51, 1241-1256.	3.8	12
214	Analysis of multicomponent adsorption kinetics on activated carbon. AICHE Journal, 2003, 49, 883-895.	3.6	12
215	Multicomponent Effective Medium–Correlated Random Walk Theory for the Diffusion of Fluid Mixtures through Porous Media. Langmuir, 2012, 28, 517-533.	3.5	12
216	Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale. Langmuir, 2013, 29, 14519-14526.	3.5	12

#	Article	IF	CITATIONS
217	Techno-economic analysis of supercritical carbon dioxide power blocks. AIP Conference Proceedings, 2017, , .	0.4	12
218	Influence of Morphology on Transport Properties and Interfacial Resistance in Nanoporous Carbons. Journal of Physical Chemistry C, 2019, 123, 21050-21058.	3.1	12
219	Simulation of multicomponent gas transport through mixed-matrix membranes. Journal of Membrane Science, 2019, 577, 219-234.	8.2	12
220	A comprehensive review on numerical approaches to simulate heat transfer of turbulent supercritical CO ₂ flows. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77, 349-400.	0.9	12
221	Formation and Aggregation of Polymorphs in Continuous Precipitation. 1. Mathematical Modeling. Industrial & Chemistry Research, 1996, 35, 1985-1994.	3.7	11
222	CAPILLARY NETWORK MODELS FOR TRANSPORT IN PACKED BEDS: CONSIDERATIONS OF PORE ASPECT RATIO. Chemical Engineering Communications, 1996, 154, 183-202.	2.6	11
223	Novel model for the sintering of ceramics with bimodal pore size distributions: Application to the sintering of lime. AICHE Journal, 2017, 63, 893-902.	3.6	11
224	Interfacial barriers to gas transport: probing solid-gas interfaces at the atomistic level. Molecular Simulation, 2019, 45, 1148-1162.	2.0	11
225	Thermal performance assessment of a thermal energy storage tank: effect of aspect ratio and tilted angle. International Journal of Energy Research, 2021, 45, 11157-11178.	4.5	11
226	Perturbation analysis of gasâ€"solid reactionsâ€"II. Reduction to the diffusion-controlled shrinking core. Chemical Engineering Science, 1991, 46, 1465-1474.	3.8	10
227	Transport of adsorbates in microporous solids: arbitrary isotherm. Proceedings of the Royal Society A, 1994, 446, 15-37.	0.9	10
228	Numerical solution of hyperbolic models of transport in bidisperse solids. Computers and Chemical Engineering, 2000, 24, 1981-1995.	3.8	10
229	Solution techniques for transport problems involving steep concentration gradients: application to noncatalytic fluid solid reactions. Computers and Chemical Engineering, 2001, 25, 1159-1168.	3.8	10
230	The Use of Liquid Phase Adsorption Isotherms for Characterization of Activated Carbons. Journal of Colloid and Interface Science, 2001, 244, 319-335.	9.4	10
231	Catalytic Degradation of High-Density Polyethylene in a Reactive Extruder. Industrial & Engineering Chemistry Research, 2008, 47, 5175-5181.	3.7	10
232	Effects of structural properties of silicon carbide-derived carbons on their electrochemical double-layer capacitance in aqueous and organic electrolytes. Journal of Solid State Electrochemistry, 2014, 18, 703-711.	2.5	10
233	Improved pore connectivity by the reduction of cobalt oxide silica membranes. Separation and Purification Technology, 2015, 154, 338-344.	7.9	10
234	Concentration-dependent transport in finite sized composites: Modified effective medium theory. Journal of Membrane Science, 2018, 550, 110-125.	8.2	10

#	Article	IF	Citations
235	Dynamics of continuous precipitation under non-stoichiometric conditions. Chemical Engineering Science, 1989, 44, 751-762.	3.8	9
236	A Heterogeneous Model for Gas Transport in Carbon Molecular Sieves. Langmuir, 2005, 21, 674-681.	3.5	9
237	Influence of Adsorbate Interaction on Transport in Confined Spaces. Adsorption Science and Technology, 2006, 24, 101-116.	3.2	9
238	Optimal Electrode Mass Ratio in Nanoporous Carbon Electrochemical Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 27925-27933.	3.1	9
239	Effect of sintering on the reactivity of copper-based oxygen carriers synthesized by impregnation. Chemical Engineering Science, 2017, 162, 131-140.	3.8	9
240	Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants. Energies, 2017, 10, 1676.	3.1	9
241	Molecular Simulation and Computational Modeling of Gas Separation through Polycarbonate/ <i>p</i> p>Nitroaniline/Zeolite 4A Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2020, 59, 16772-16785.	3.7	9
242	Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes, 2021, 11, 328.	3.0	9
243	Solution of adsorption problems involving steep moving profiles. Computers and Chemical Engineering, 1998, 22, 893-896.	3.8	8
244	Dryout phenomena in a three-phase fixed-bed reactor. AICHE Journal, 2003, 49, 225-231.	3.6	8
245	Scattering and tangential momentum accommodation at a 2D adsorbate–solid interface. Journal of Membrane Science, 2006, 275, 244-254.	8.2	8
246	Pore accessibility of N2 and Ar in disordered nanoporous solids: theory and experiment. Adsorption, 2007, 13, 307-314.	3.0	8
247	Stereospecific synthesis of 2-thiophosphatidylcholines; A new class of biologically active phospholipid analogues. Tetrahedron Letters, 1987, 28, 3767-3770.	1.4	7
248	Stereospecific synthesis of ether phospholipids. Preparation of 1-octadecyl-2-alkylaminodeoxyglycerophosphocholines. Tetrahedron Letters, 1991, 32, 6521-6524.	1.4	7
249	Modelling of sorption of gaseous sorbates in bidispersed structured solids. Separation and Purification Technology, 1991, 5, 49-55.	0.3	7
250	Stereospecific synthesis of antitumor active thioether PAF analogs. Lipids, 1991, 26, 1424-1430.	1.7	7
251	A model for adsorption of condensable vapors on nonporous materials. Separation and Purification Technology, 2000, 20, 25-39.	7.9	7
252	Method for determining the shear stress in cylindrical systems. Physical Review E, 2003, 67, 041206.	2.1	7

#	Article	IF	CITATIONS
253	Accessibility of simple gases in disordered carbons: theory and simulation. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 557-562.	1.5	7
254	Efficiency of a Combined Desalination and Power System Utilizing a Two-Phase Flow Multistream Heat Exchanger. Heat Transfer Engineering, 2017, 38, 1000-1007.	1.9	7
255	Estimation of Pore Size Distribution of Amorphous Silica-Based Membrane by the Activation Energies of Gas Permeation. Processes, 2018, 6, 239.	2.8	7
256	The induced orientation effect of linear gases during transport in a NaA zeolite membrane modified by alkali lignin. Journal of Membrane Science, 2021, 620, 118971.	8.2	7
257	System Size-Dependent Transport Properties in Materials of Nanoscale Dimension. Journal of Physical Chemistry C, 2021, 125, 6963-6974.	3.1	7
258	Technoâ€economic analysis of a hybrid solarâ€geothermal power plant integrated with a desalination system. International Journal of Energy Research, 2021, 45, 17955-17970.	4.5	7
259	Investigation and simulation of the transport of gas containing mercury in microporous silica membranes. Chemical Engineering Science, 2018, 190, 286-296.	3.8	7
260	On the concentration dependence of surface diffusion coefficients in capillary porous materials. Proceedings of the Royal Society A, 1991, 434, 317-340.	0.9	6
261	A wavelet-based adaptive technique for adsorption problems involving steep gradients. Computers and Chemical Engineering, 2001, 25, 1611-1619.	3 . 8	6
262	Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing. Processes, 2013, 1, 49-66.	2.8	6
263	Effect of Activating Agents: Flue Gas and CO ₂ on the Preparation of Activated Carbon for Methane Storage. Energy & Ene	5.1	6
264	Experimental Investigation on Spray Cooling Using Saline Water. Mathematical Geosciences, 2019, 51, 337-351.	2.4	6
265	Development of Decision-Making Tool and Pareto Set Analysis for Bi-Objective Optimization of an ORC Power Plant. Energies, 2020, 13, 5280.	3.1	6
266	Impact of high adsorbent conductivity on adsorption of polar molecules: simulation of phenol adsorption on graphene sheets. Adsorption, 2020, 26, 537-552.	3.0	6
267	Assessment of CO2 adsorption capacity in Wollastonite using atomistic simulation. Journal of CO2 Utilization, 2021, 50, 101564.	6.8	6
268	Nonuniformity of Transport Coefficients in Ultrathin Nanoscale Membranes and Nanomaterials. ACS Applied Materials & Distriction (2021), 13, 59546-59559.	8.0	6
269	MULTIPLICITY AND STABILITY ANALYSIS OF AGGLOMERATION CONTROLLED PRECIPITATION. Chemical Engineering Communications, 1991, 104, 227-244.	2.6	5
270	Simulation of reaction and transport in catalyst particles with partial external and internal wetting. International Journal of Heat and Mass Transfer, 1995, 38, 1443-1455.	4.8	5

#	Article	IF	Citations
271	Modelling of heat transfer in fluidized-bed coating of thin plates. Chemical Engineering Science, 1998, 53, 1307-1310.	3.8	5
272	Vacancy solution theory for binary adsorption equilibria in heterogeneous carbon. AICHE Journal, 2002, 48, 1938-1956.	3.6	5
273	Effects of the Juxtaposition of Carbonaceous Slit Pores on the Overall Transport Behavior of Adsorbed Fluids. Langmuir, 2005, 21, 229-239.	3.5	5
274	Effect of catalyst loading on kinetics of catalytic degradation of high density polyethylene: Experiment and modelling. Chemical Engineering Science, 2010, 65, 796-806.	3.8	5
275	Multicomponent transport in nanoporous networks: Theory and simulation. Chemical Engineering Journal, 2018, 346, 748-761.	12.7	5
276	Use of liquid phase adsorption for characterizing pore network connectivity in activated carbon. Applied Surface Science, 2002, 196, 281-295.	6.1	4
277	Fluorination-Induced Changes in Hydrophobicity of Silicon Carbide-Derived Nanoporous Carbon. Journal of Physical Chemistry C, 2016, 120, 18595-18606.	3.1	4
278	An Investigation on Cooling Performance of Air-Cooled Heat Exchangers Used in Coal Seam Gas Production. Heat Transfer Engineering, 2017, 38, 1073-1088.	1.9	4
279	Special Issue on "Transport of Fluids in Nanoporous Materials― Processes, 2019, 7, 14.	2.8	4
280	Heat Transfer in Saline Water Evaporative Cooling. Heat Transfer Engineering, 2019, 40, 429-436.	1.9	4
281	Transient natural convection: scale analysis of dry cooling towers. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2891-2897.	3.6	4
282	Growth rate dispersion in MSMRP crystallizers: Solution by regularization. Chemical Engineering Science, 1993, 48, 3405-3415.	3.8	3
283	HYSTERESIS AND PHASE TRANSITIONS IN A SINGLE PARTIALLY INTERNALLY WETTED CATALYST PELLET: THERMOGRAVIMETRIC STUDIES. Chemical Engineering Communications, 1997, 157, 109-133.	2.6	3
284	Structural analysis of microporous carbons by nonane preadsorption. Carbon, 1998, 36, 1866-1869.	10.3	3
285	Adsorbate Transport in Nanopores. Adsorption, 2005, 11, 443-447.	3.0	3
286	The structure of high-pressure adsorbed fluids in slit-pores. Studies in Surface Science and Catalysis, 2007, , 503-509.	1.5	3
287	Influence of force field used in carbon nanostructure reconstruction on simulated phenol adsorption isotherms in aqueous medium. Journal of Molecular Liquids, 2021, 344, 117548.	4.9	3
288	Viscoelastic parameters of invasive breast cancer in correlation with porous structure and elemental analysis data. Computer Methods and Programs in Biomedicine, 2021, 212, 106482.	4.7	3

#	Article	IF	CITATIONS
289	On the apparently quasi-steady catalytic surface. Chemical Engineering Science, 1987, 42, 2972-2974.	3.8	2
290	Kinetics of solid state reaction between barium carbonate and cupric oxide. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1992, 23, 493-503.	0.4	2
291	Effect of pore-network connectivity on multicomponent adsorption of large molecules. AICHE Journal, 2003, 49, 65-81.	3.6	2
292	Momentum Transfer Effects in the Transport of Adsorbate at a Nano-Patterned Surface. Adsorption Science and Technology, 2005, 23, 633-642.	3.2	2
293	Theoretical analysis of free convection in a partially foam-filled enclosure. Heat and Mass Transfer, 2019, 55, 1937-1946.	2.1	2
294	Adsorption Hysteresis and Criticality in Regular Mesoporous Materials. Studies in Surface Science and Catalysis, 2000, 128, 187-196.	1.5	1
295	On the non-equilibrium nature of the nanopore fluid. Molecular Simulation, 2012, 38, 1251-1264.	2.0	1
296	Conditional Methods in Modeling CO2 Capture from Coal Syngas. Energies, 2014, 7, 1899-1916.	3.1	1
297	Selected Papers from the 1st International Conference on Nanofluids (ICNf). Heat Transfer Engineering, 2020, , 1-3.	1.9	1
298	Special Section on Flow Physics of Supercritical Fluids in Engineering. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	1.5	1
299	CHARACTERISATION OF MCM-41 USING REGULARIZATION., 2000,,.		O
300	Percolation Phenomena in Micropore Adsorption: Influence on Single and Multicomponent Adsorption Equilibria. Studies in Surface Science and Catalysis, 2002, 144, 123-130.	1.5	0
301	Hybrid Reverse Monte Carlo Reconstruction and Simulation Studies. , 2006, , .		O
302	Quantum Mediated Reverse Kinetic Molecular Seiving in Microporous Materials., 2006,,.		0
303	Towards Determining the Interaction of Fluids with Nanostructured Carbons. , 2006, , .		O
304	Accessibility of Gases and Liquids in Carbons. , 2012, , 37-60.		0
305	A new automatic spark generation system for gasoline engines. , 2016, , .		0
	Selected Papers From the 17th IAHR (International Association for Hydro-Environment Engineering and) Tj ETQq0	0 0 0 rgBT	/Overlock 10

18

Engineering, 2017, 38, 987-989.

306

#	Article	IF	CITATIONS
307	CHARACTERIZATION OF PORE STRUCTURE OF ACTIVATED CARBON BY GAS AND LIQUID PHASE ADSORPTION. , 2000, , .		0
308	A MODEL FOR ADSORPTION OF CONDENSABLE VAPORS ON NONPOROUS MATERIALS. , 2000, , .		0