
Valérie Gyselinck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age effect on components of episodic memory and feature binding: A virtual reality study Neuropsychology, 2010, 24, 379-390.	1.3	114
2	Visuospatial working memory and mental representation of spatial descriptions. European Journal of Cognitive Psychology, 2005, 17, 77-95.	1.3	82
3	Visuospatial memory and phonological loop in learning from multimedia. Applied Cognitive Psychology, 2002, 16, 665-685.	1.6	65
4	Working memory components and imagery instructions in the elaboration of a spatial mental model. Psychological Research, 2007, 71, 373-382.	1.7	50
5	Levels of representation and domain-specific knowledge in comprehension of scientific texts. Language and Cognitive Processes, 1992, 7, 335-351.	2.2	39
6	The role of working memory in spatial text processing: What benefit of imagery strategy and visuospatial abilities?. Learning and Individual Differences, 2009, 19, 12-20.	2.7	36
7	Assessing human reorientation ability inside virtual reality environments: the effects of retention interval and landmark characteristics. Cognitive Processing, 2008, 9, 299-309.	1.4	33
8	Individual differences in spatial text processing: High spatial ability can compensate for spatial working memory interference. Learning and Individual Differences, 2009, 19, 577-589.	2.7	32
9	Landmark and route knowledge in childrenââ,¬â,,¢s spatial representation of a virtual environment. Frontiers in Psychology, 2014, 5, 1522.	2.1	30
10	Learning Is Better with the Hands Free: The Role of Posture in the Memory of Manipulable Objects. PLoS ONE, 2016, 11, e0159108.	2.5	30
11	Working memory components in survey and route spatial text processing. Cognitive Processing, 2010, 11, 359-369.	1.4	28
12	Is Memory for Routes Enhanced by an Environment's Richness in Visual Landmarks?. Spatial Cognition and Computation, 2014, 14, 284-305.	1.2	27
13	Age-differences in environment route learning: The role of input and recall-test modalities in young and older adults. Learning and Individual Differences, 2012, 22, 884-890.	2.7	25
14	The role of working memory components and visuospatial abilities in route learning within a virtual environment. Journal of Cognitive Psychology, 2013, 25, 38-50.	0.9	24
15	The Integration of Realistic Episodic Memories Relies on Different Working Memory Processes: Evidence from Virtual Navigation. Frontiers in Psychology, 2018, 9, 47.	2.1	24
16	The role of visuo-spatial abilities in recall of spatial descriptions: A mediation model. Learning and Individual Differences, 2011, 21, 719-723.	2.7	22
17	Considering spatial ability in virtual route learning in early aging. Cognitive Processing, 2013, 14, 309-316.	1.4	22
18	Working memory involvement in spatial text processing: What advantages are gained from extended learning and visuo-spatial strategies?. British Journal of Psychology, 2011, 102, 499-518.	2.3	20

VALéRIE GYSELINCK

#	Article	IF	CITATIONS
19	The joint role of spatial ability and imagery strategy in sustaining the learning of spatial descriptions under spatial interference. Learning and Individual Differences, 2013, 24, 32-41.	2.7	19
20	How to change your memory of an object with a posture and a verb. Quarterly Journal of Experimental Psychology, 2019, 72, 1112-1118.	1.1	19
21	Spatial Mental Models: The Interaction of Presentation Format, Task Requirements and Availability of Working Memory Components. Applied Cognitive Psychology, 2013, 27, 314-327.	1.6	18
22	How do users choose their routes in public transport? The effect of individual profile and contextual factors. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 51, 24-37.	3.7	18
23	Exploring factors related to users' experience of public transport route choice: influence of context and users profiles. Cognition, Technology and Work, 2016, 18, 287-301.	3.0	15
24	The role of verbal and visuo-spatial working memory in the encoding of virtual routes by children and adults. Journal of Cognitive Psychology, 2018, 30, 710-727.	0.9	11
25	The role of visual and spatial working memory in forming mental models derived from survey and route descriptions. British Journal of Psychology, 2017, 108, 225-243.	2.3	10
26	"Like a ball and chain― Altering locomotion effort perception distorts spatial representations. Journal of Environmental Psychology, 2018, 60, 63-71.	5.1	8
27	La cognition spatiale pour repenser les aides à la navigation. Annee Psychologique, 2019, Vol. 119, 243-278.	0.3	8
28	Cognition incarnéeÂ: un point de vue sur les représentations spatiales. Annee Psychologique, 2016, 116, 419-465.	0.3	7
29	"Walk this way― specific contributions of active walking to the encoding of metric properties during spatial learning. Psychological Research, 2021, 85, 2502-2517.	1.7	6
30	Crossing hands behind your back reduces recall of manual action sentences and alters brain dynamics. Cortex, 2021, 140, 51-65.	2.4	6
31	Construction of a spatial mental model from a verbal description or from navigation in a virtual environment. Cognitive Processing, 2006, 7, 46-48.	1.4	5
32	Route planning with transportation network maps: an eye-tracking study. Psychological Research, 2017, 81, 1020-1034.	1.7	5
33	Difficulties and Problem-Solving Strategies in Wayfinding Among Adults With Cognitive Disabilities: A Look at the Bigger Picture. Frontiers in Human Neuroscience, 2020, 14, 46.	2.0	5
34	Aging and posture in the memory of manipulable objects. Aging, Neuropsychology, and Cognition, 2021, 28, 26-36.	1.3	4
35	The influence of environmental context on spatial learning. Openness of the environment and spatial mental representations in the city of Venice. Journal of Environmental Psychology, 2021, 76, 101629.	5.1	4
36	Historic note on Henri Piéron's election at the Collège de France (1923). Annee Psychologique, 2015, 115, 177-196.	0.3	2

VALéRIE GYSELINCK

#	Article	IF	CITATIONS
37	The Postural Effect on the Memory of Manipulable Objects. Experimental Psychology, 2021, 68, 333-339.	0.7	2
38	Exploring human behavior with Grand Theft Auto V: A study of assisted cognition in wayfinding. The International Journal of Virtual Reality, 2020, 20, 33-47.	2.2	1
39	Points de repère et actions dans les descriptions verbales d'itinérairesÂ: une étude développementale. Enfance, 2021, N° 5, 51-67.	0.2	0
40	"Run to the hills― Specific contributions of anticipated energy expenditure during active spatial learning. Quarterly Journal of Experimental Psychology, 2022, 75, 2287-2307.	1.1	0