
Ran Brosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257801/publications.pdf Version: 2024-02-01

PAN ROOSH

#	Article	IF	CITATIONS
1	A conditional counterselectable Piga knockout in mouse embryonic stem cells for advanced genome writing applications. IScience, 2022, 25, 104438.	4.1	0
2	Synthetic regulatory reconstitution reveals principles of mammalian <i>Hox</i> cluster regulation. Science, 2022, 377, .	12.6	18
3	A versatile platform for locus-scale genome rewriting and verification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
4	<i>De novo</i> assembly and delivery to mouse cells of a 101 kb functional human gene. Genetics, 2021, 218, .	2.9	23
5	Memory of Divisional History Directs the Continuous Process of Primitive Hematopoietic Lineage Commitment. Stem Cell Reports, 2020, 14, 561-574.	4.8	11
6	A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nature Communications, 2020, 11, 1282.	12.8	71
7	Probing the dark matter of the human genome with big DNA. Biochemist, 2019, 41, 46-48.	0.5	3
8	A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nature Communications, 2016, 7, 11742.	12.8	40
9	Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports, 2015, 5, 97-110.	4.8	52
10	p53 Counteracts reprogramming by inhibiting mesenchymal-to-epithelial transition. Cell Death and Differentiation, 2013, 20, 312-320.	11.2	46
11	Various p53 mutant types differently regulate the Ras circuit to induce a cancer-related gene signature. Journal of Cell Science, 2012, 125, 3144-52.	2.0	60
12	Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genetics, 2012, 44, 1207-1214.	21.4	262
13	TMPRSS2/ERG Promotes Epithelial to Mesenchymal Transition through the ZEB1/ZEB2 Axis in a Prostate Cancer Model. PLoS ONE, 2011, 6, e21650.	2.5	94
14	Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes and Cancer, 2011, 2, 466-474.	1.9	751
15	SPATA18, a Spermatogenesis-Associated Gene, Is a Novel Transcriptional Target of p53 and p63. Molecular and Cellular Biology, 2011, 31, 1679-1689.	2.3	36
16	Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression. Carcinogenesis, 2011, 32, 1749-1757.	2.8	39
17	p53â€dependent transcriptional regulation of EDA2R and its involvement in chemotherapyâ€induced hair loss. FEBS Letters, 2010, 584, 2473-2477.	2.8	36
18	p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis, 2010, 31, 1501-1508.	2.8	140

Ran Brosh

#	Article	IF	CITATIONS
19	p53 Regulates the Ras Circuit to Inhibit the Expression of a Cancer-Related Gene Signature by Various Molecular Pathways. Cancer Research, 2010, 70, 2274-2284.	0.9	66
20	Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. Journal of Experimental Medicine, 2010, 207, 2127-2140.	8.5	153
21	Transcriptional control of the proliferation cluster by the tumor suppressor p53. Molecular BioSystems, 2010, 6, 17-29.	2.9	28
22	A Novel Translocation Breakpoint within the BPTF Gene Is Associated with a Pre-Malignant Phenotype. PLoS ONE, 2010, 5, e9657.	2.5	53
23	Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. Journal of Cell Biology, 2010, 190, i10-i10.	5.2	0
24	Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discovery Medicine, 2010, 9, 448-54.	0.5	21
25	Modulated expression of WFDC1 during carcinogenesis and cellular senescence. Carcinogenesis, 2009, 30, 20-27.	2.8	76
26	Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis, 2009, 30, 698-705.	2.8	68
27	When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer, 2009, 9, 701-713.	28.4	999
28	Structural Basis of Restoring Sequence-Specific DNA Binding and Transactivation to Mutant p53 by Suppressor Mutations. Journal of Molecular Biology, 2009, 385, 249-265.	4.2	52
29	Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging, 2009, 1, 762-770.	3.1	56
30	p53â€repressed miRNAs are involved with E2F in a feedâ€forward loop promoting proliferation. Molecular Systems Biology, 2008, 4, 229.	7.2	138
31	Myocardin in Tumor Suppression and Myofibroblast Differentiation. Cell Cycle, 2007, 6, 1141-1146.	2.6	13
32	Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site. PLoS ONE, 2007, 2, e807.	2.5	55
33	Inactivation of Myocardin and p16 during Malignant Transformation Contributes to a Differentiation Defect. Cancer Cell, 2007, 11, 133-146.	16.8	67
34	Mutant p53 Protects Cells from 12-O-Tetradecanoylphorbol-13-Acetate–Induced Death by Attenuating Activating Transcription Factor 3 Induction. Cancer Research, 2006, 66, 10750-10759.	0.9	37
35	The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Molecular Systems Biology, 2005, 1, 2005.0022.	7.2	64
36	p53-dependent Down-regulation of Telomerase Is Mediated by p21. Journal of Biological Chemistry, 2004, 279, 50976-50985.	3.4	123