Ran Brosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257801/publications.pdf

Version: 2024-02-01

218677 377865 3,827 36 26 34 citations h-index g-index papers 43 43 43 7448 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer, 2009, 9, $701-713$.	28.4	999
2	Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes and Cancer, 2011, 2, 466-474.	1.9	751
3	Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genetics, 2012, 44, 1207-1214.	21.4	262
4	Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. Journal of Experimental Medicine, 2010, 207, 2127-2140.	8.5	153
5	p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis, 2010, 31, 1501-1508.	2.8	140
6	p53â€repressed miRNAs are involved with E2F in a feedâ€forward loop promoting proliferation. Molecular Systems Biology, 2008, 4, 229.	7.2	138
7	p53-dependent Down-regulation of Telomerase Is Mediated by p21. Journal of Biological Chemistry, 2004, 279, 50976-50985.	3.4	123
8	TMPRSS2/ERG Promotes Epithelial to Mesenchymal Transition through the ZEB1/ZEB2 Axis in a Prostate Cancer Model. PLoS ONE, 2011, 6, e21650.	2.5	94
9	Modulated expression of WFDC1 during carcinogenesis and cellular senescence. Carcinogenesis, 2009, 30, 20-27.	2.8	76
10	A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nature Communications, 2020, 11, 1282.	12.8	71
11	Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis, 2009, 30, 698-705.	2.8	68
12	Inactivation of Myocardin and p16 during Malignant Transformation Contributes to a Differentiation Defect. Cancer Cell, 2007, 11, 133-146.	16.8	67
13	p53 Regulates the Ras Circuit to Inhibit the Expression of a Cancer-Related Gene Signature by Various Molecular Pathways. Cancer Research, 2010, 70, 2274-2284.	0.9	66
14	The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Molecular Systems Biology, 2005, 1, 2005.0022.	7.2	64
15	Various p53 mutant types differently regulate the Ras circuit to induce a cancer-related gene signature. Journal of Cell Science, 2012, 125, 3144-52.	2.0	60
16	Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging, 2009, 1, 762-770.	3.1	56
17	Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site. PLoS ONE, 2007, 2, e807.	2.5	55
18	A Novel Translocation Breakpoint within the BPTF Gene Is Associated with a Pre-Malignant Phenotype. PLoS ONE, 2010, 5, e9657.	2.5	53

#	Article	IF	CITATIONS
19	Structural Basis of Restoring Sequence-Specific DNA Binding and Transactivation to Mutant p53 by Suppressor Mutations. Journal of Molecular Biology, 2009, 385, 249-265.	4.2	52
20	Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports, 2015, 5, 97-110.	4.8	52
21	p53 Counteracts reprogramming by inhibiting mesenchymal-to-epithelial transition. Cell Death and Differentiation, 2013, 20, 312-320.	11.2	46
22	A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nature Communications, 2016, 7, 11742.	12.8	40
23	Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression. Carcinogenesis, 2011, 32, 1749-1757.	2.8	39
24	Mutant p53 Protects Cells from 12-O-Tetradecanoylphorbol-13-Acetate–Induced Death by Attenuating Activating Transcription Factor 3 Induction. Cancer Research, 2006, 66, 10750-10759.	0.9	37
25	A versatile platform for locus-scale genome rewriting and verification. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	37
26	p53â€dependent transcriptional regulation of EDA2R and its involvement in chemotherapyâ€induced hair loss. FEBS Letters, 2010, 584, 2473-2477.	2.8	36
27	SPATA18, a Spermatogenesis-Associated Gene, Is a Novel Transcriptional Target of p53 and p63. Molecular and Cellular Biology, 2011, 31, 1679-1689.	2.3	36
28	Transcriptional control of the proliferation cluster by the tumor suppressor p53. Molecular BioSystems, 2010, 6, 17-29.	2.9	28
29	<i>De novo</i> assembly and delivery to mouse cells of a 101 kb functional human gene. Genetics, 2021, 218, .	2.9	23
30	Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discovery Medicine, 2010, 9, 448-54.	0.5	21
31	Synthetic regulatory reconstitution reveals principles of mammalian <i>Hox</i> cluster regulation. Science, 2022, 377, .	12.6	18
32	Myocardin in Tumor Suppression and Myofibroblast Differentiation. Cell Cycle, 2007, 6, 1141-1146.	2.6	13
33	Memory of Divisional History Directs the Continuous Process of Primitive Hematopoietic Lineage Commitment. Stem Cell Reports, 2020, 14, 561-574.	4.8	11
34	Probing the dark matter of the human genome with big DNA. Biochemist, 2019, 41, 46-48.	0.5	3
35	Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. Journal of Cell Biology, 2010, 190, i10-i10.	5.2	0
36	A conditional counterselectable Piga knockout in mouse embryonic stem cells for advanced genome writing applications. IScience, 2022, 25, 104438.	4.1	0