Mark Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257172/publications.pdf

Version: 2024-02-01

44069 56724 9,967 331 48 83 citations h-index g-index papers 333 333 333 5260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	2.8	710
2	Standing wave and skin effects in large-area, high-frequency capacitive discharges. Plasma Sources Science and Technology, 2002, 11, 283-293.	3.1	324
3	Collisionless electron heating in an inductively coupled discharge. Physical Review Letters, 1993, 71, 1844-1847.	7.8	218
4	Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices. Journal Physics D: Applied Physics, 2004, 37, 697-701.	2.8	214
5	Simulation benchmarks for low-pressure plasmas: Capacitive discharges. Physics of Plasmas, 2013, 20, .	1.9	198
6	Hysteresis and the E-to-H transition in radiofrequency inductive discharges. Plasma Sources Science and Technology, 1999, 8, 313-324.	3.1	183
7	Pressure Heating of Electrons in Capacitively Coupled rf Discharges. Physical Review Letters, 1995, 75, 1312-1315.	7.8	161
8	Collisionless Heating in Capacitive Discharges Enhanced by Dual-Frequency Excitation. Physical Review Letters, 2006, 96, 205001.	7.8	161
9	Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas. Applied Physics Letters, 2006, 89, 261502.	3.3	159
10	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
10	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001. Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and Technology, 2004, 13, 493-503.	3.5	149
	Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and		
11	Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and Technology, 2004, 13, 493-503. Concepts and characteristics of the â€~COST Reference Microplasma Jet'. Journal Physics D: Applied	3.1	149
11 12	Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and Technology, 2004, 13, 493-503. Concepts and characteristics of the †COST Reference Microplasma Jet†M. Journal Physics D: Applied Physics, 2016, 49, 084003. The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied	3.1	149
11 12 13	Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and Technology, 2004, 13, 493-503. Concepts and characteristics of the †COST Reference Microplasma Jet†M. Journal Physics D: Applied Physics, 2016, 49, 084003. The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied Physics, 2022, 55, 373001. Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis. Plasma Sources Science and Technology, 1999, 8,	3.1 2.8 2.8	149 148 139
11 12 13	Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and Technology, 2004, 13, 493-503. Concepts and characteristics of the †COST Reference Microplasma Jet†M. Journal Physics D: Applied Physics, 2016, 49, 084003. The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied Physics, 2022, 55, 373001. Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis. Plasma Sources Science and Technology, 1999, 8, 576-586.	3.1 2.8 2.8 3.1	149 148 139
11 12 13 14	Electrostatic modelling of dual frequency rf plasma discharges. Plasma Sources Science and Technology, 2004, 13, 493-503. Concepts and characteristics of the †COST Reference Microplasma Jet†M. Journal Physics D: Applied Physics, 2016, 49, 084003. The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied Physics, 2022, 55, 373001. Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry: bi-stability and hysteresis. Plasma Sources Science and Technology, 1999, 8, 576-586. Collisionless Electron Heating by Capacitive rf Sheaths. Physical Review Letters, 2001, 87, 135004. Analytical model of a dual frequency capacitive sheath. Journal Physics D: Applied Physics, 2003, 36,	3.1 2.8 2.8 3.1	149 148 139 126

#	Article	IF	CITATIONS
19	Collisionless heating in radio-frequency discharges: a review. Journal Physics D: Applied Physics, 2009, 42, 194008.	2.8	113
20	Hysteresis in the E- to H-mode transition in a planar coil, inductively coupled rf argon discharge. Journal Physics D: Applied Physics, 1998, 31, 3082-3094.	2.8	104
21	Anomalous sheath heating in a low pressure rf discharge in nitrogen. Physical Review Letters, 1992, 69, 3511-3514.	7.8	102
22	Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions. Physics of Plasmas, 2006, 13, 033506.	1.9	94
23	Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET. Nuclear Materials and Energy, 2017, 12, 111-118.	1.3	92
24	Foundations of modelling of nonequilibrium low-temperature plasmas. Plasma Sources Science and Technology, 2018, 27, 023002.	3.1	92
25	Heating Mode Transition Induced by a Magnetic Field in a Capacitive rf Discharge. Physical Review Letters, 1996, 76, 2069-2072.	7.8	85
26	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	3.5	83
27	WEST Physics Basis. Nuclear Fusion, 2015, 55, 063017.	3.5	82
28	Pedestal confinement and stability in JET-ILW ELMy H-modes. Nuclear Fusion, 2015, 55, 113031.	3.5	82
29	Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz. Plasma Physics and Controlled Fusion, 2016, 58, 014036.	2.1	81
30	Improved confinement in JET highl²plasmas with an ITER-like wall. Nuclear Fusion, 2015, 55, 053031.	3.5	79
31	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73
32	Overview of the JET results with the ITER-like wall. Nuclear Fusion, 2013, 53, 104002.	3.5	70
33	WALLDYN simulations of global impurity migration in JET and extrapolations to ITER. Nuclear Fusion, 2015, 55, 053015.	3.5	67
34	Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak. Physical Review Letters, 2016, 116, 065002.	7.8	64
35	One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma. Physics of Plasmas, 2005, 12, 052317.	1.9	63
36	Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET. Nuclear Fusion, 2015, 55, 123026.	3.5	60

#	Article	IF	CITATIONS
37	Runaway electron beam generation and mitigation during disruptions at JET-ILW. Nuclear Fusion, 2015, 55, 093013.	3.5	58
38	Uncertainty and error in complex plasma chemistry models. Plasma Sources Science and Technology, 2015, 24, 035027.	3.1	58
39	Melt damage to the JET ITER-like Wall and divertor. Physica Scripta, 2016, T167, 014070.	2.5	58
40	Erosion and deposition in the JET divertor during the first ILW campaign. Physica Scripta, 2016, T167, 014051.	2.5	58
41	Global models of electronegative discharges: critical evaluation and practical recommendations. Plasma Sources Science and Technology, 2008, 17, 045003.	3.1	56
42	Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nuclear Fusion, 2015, 55, 053007.	3.5	56
43	Influence of theE  ×  Bdrift in high recycling divertors on target asymmetries. Plasma Physics a Controlled Fusion, 2015, 57, 095002.	nd 2.1	56
44	Modelling of the dual frequency capacitive sheath in the intermediate pressure range. Journal Physics D: Applied Physics, 2004, 37, 1451-1458.	2.8	54
45	Long-term fuel retention in JET ITER-like wall. Physica Scripta, 2016, T167, 014075.	2.5	52
46	First dust study in JET with the ITER-like wall: sampling, analysis and classification. Nuclear Fusion, 2015, 55, 113033.	3.5	51
47	Scaling of the MHD perturbation amplitude required to trigger a disruption and predictions for ITER. Nuclear Fusion, 2016, 56, 026007.	3.5	51
48	Overview of the JET results. Nuclear Fusion, 2015, 55, 104001.	3.5	50
49	The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas. Physics of Plasmas, 2015, 22, 055902.	1.9	49
50	Electron heating mechanisms in dual-frequency capacitive discharges. Plasma Sources Science and Technology, 2007, 16, 364-371.	3.1	48
51	Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK. Plasma Physics and Controlled Fusion, 2017, 59, 014006.	2.1	47
52	Overview of JET results. Nuclear Fusion, 2009, 49, 104006.	3.5	46
53	Overview of the JET ITER-like wall divertor. Nuclear Materials and Energy, 2017, 12, 499-505.	1.3	46
54	Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET. Physics of Plasmas, 2015, 22, .	1.9	45

#	Article	IF	CITATIONS
55	lon target impact energy during Type I edge localized modes in JET ITER-like Wall. Plasma Physics and Controlled Fusion, 2015, 57, 085006.	2.1	44
56	Effect of driving frequency on the electron energy distribution function and electron-sheath interaction in a low pressure capacitively coupled plasma. Physics of Plasmas, 2016, 23, .	1.9	44
57	Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall. Plasma Physics and Controlled Fusion, 2017, 59, 045001.	2.1	43
58	Analysis of the excited argon atoms in the GEC RF reference cell by means of one-dimensional PIC simulations. Journal Physics D: Applied Physics, 2004, 37, 2216-2222.	2.8	42
59	First neutron spectroscopy measurements with a pixelated diamond detector at JET. Review of Scientific Instruments, 2016, 87, 11D833.	1.3	42
60	QDB: a new database of plasma chemistries and reactions. Plasma Sources Science and Technology, 2017, 26, 055014.	3.1	42
61	Comparison of measurements and particle-in-cell simulations of ion energy distribution functions in a capacitively coupled radio-frequency discharge. Physics of Plasmas, 2007, 14, 103510.	1.9	41
62	Studies of dust from JET with the ITER-Like Wall: Composition and internal structure. Nuclear Materials and Energy, 2017, 12, 582-587.	1.3	41
63	Pulse sharpening in a uniform LC ladder network containing nonlinear ferroelectric capacitors. IEEE Transactions on Electron Devices, 1991, 38, 767-771.	3.0	40
64	The effects of a small transverse magnetic field upon a capacitively coupled RF discharge. IEEE Transactions on Plasma Science, 1995, 23, 636-643.	1.3	40
65	Inferring divertor plasma properties from hydrogen Balmer and Paschen series spectroscopy in JET-ILW. Nuclear Fusion, 2015, 55, 123028.	3.5	40
66	JET and COMPASS asymmetrical disruptions. Nuclear Fusion, 2015, 55, 113006.	3.5	40
67	Influence of excitation frequency on the metastable atoms and electron energy distribution function in a capacitively coupled argon discharge. Physics of Plasmas, 2018, 25, .	1.9	40
68	Overview of JET results. Nuclear Fusion, 2003, 43, 1540-1554.	3.5	38
69	Anomalous skin effect and collisionless power dissipation in inductively coupled discharges. Journal of Applied Physics, 2001, 89, 3580-3589.	2.5	37
70	Simulation study of stochastic heating in single-frequency capacitively coupled discharges with critical evaluation of analytical models. Plasma Sources Science and Technology, 2013, 22, 035014.	3.1	37
71	Physics of Plasmas, 2015, 22, 056115.	1.9	37
72	The role of MHD in causing impurity peaking in JET hybrid plasmas. Nuclear Fusion, 2016, 56, 066002.	3.5	37

#	Article	IF	CITATIONS
73	Uncertainty and sensitivity analysis in complex plasma chemistry models. Plasma Sources Science and Technology, 2016, 25, 015003.	3.1	37
74	Generation of reactive species by an atmospheric pressure plasma jet. Plasma Sources Science and Technology, 2014, 23, 065013.	3.1	36
75	Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas. Plasma Physics and Controlled Fusion, 2016, 58, 074005.	2.1	36
76	Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER. Nuclear Fusion, 2016, 56, 026001.	3.5	36
77	Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium–tritium fusion plasma diagnostics. Measurement Science and Technology, 2018, 29, 045502.	2.6	35
78	Using the resonance hairpin probe and pulsed photodetachment technique as a diagnostic for negative ions in oxygen plasma. Plasma Sources Science and Technology, 2010, 19, 065002.	3.1	34
79	Deep learning for plasma tomography using the bolometer system at JET. Fusion Engineering and Design, 2017, 114, 18-25.	1.9	34
80	Measured and simulated electron energy distribution functions in a lowâ€pressure radio frequency discharge in argon. Applied Physics Letters, 1993, 62, 3247-3249.	3.3	33
81	Simulation of kinetic effects in inductive discharges. Plasma Sources Science and Technology, 1996, 5, 159-165.	3.1	33
82	Plasma boundary sheath in the afterglow of a pulsed inductively coupled RF plasma. Plasma Sources Science and Technology, 2007, 16, 355-363.	3.1	33
83	Atomic oxygen patterning from a biomedical needle-plasma source. Journal of Applied Physics, 2013, 114, 123301.	2.5	33
84	Discriminating the trapped electron modes contribution in density fluctuation spectra. Nuclear Fusion, 2015, 55, 093021.	3.5	33
85	Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER. Nuclear Fusion, 2015, 55, 123001.	3.5	33
86	Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet. Journal Physics D: Applied Physics, 2015, 48, 444002.	2.8	33
87	Challenges in the extrapolation from DD to DT plasmas: experimental analysis and theory based predictions for JET-DT. Plasma Physics and Controlled Fusion, 2017, 59, 014023.	2.1	33
88	Plasma density and ion energy control via driving frequency and applied voltage in a collisionless capacitively coupled plasma discharge. Physics of Plasmas, 2018, 25, .	1.9	33
89	Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements. Physica Scripta, 2016, T167, 014005.	2.5	31
90	Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications. Review of Scientific Instruments, 2016, 87, 11E714.	1.3	31

#	Article	IF	Citations
91	Fast-ion energy resolution by one-step reaction gamma-ray spectrometry. Nuclear Fusion, 2016, 56, 046009.	3.5	31
92	Collisionless electron heating by capacitive radio-frequency plasma sheaths. Plasma Sources Science and Technology, 2001, 10, 117-124.	3.1	30
93	Benchmark experiments on neutron streaming through JET Torus Hall penetrations. Nuclear Fusion, 2015, 55, 053028.	3.5	29
94	Axisymmetric oscillations at L–H transitions in JET: M-mode. Nuclear Fusion, 2017, 57, 022021.	3.5	29
95	Methods of theoretical analysis and computer modeling of the shaping of electrical pulses by nonlinear transmission lines and lumped-element delay lines. IEEE Transactions on Electron Devices, 1991, 38, 810-816.	3.0	28
96	Use of particle-in-cell simulations to improve the actinometry technique for determination of absolute atomic oxygen density. Plasma Sources Science and Technology, 2013, 22, 045004.	3.1	28
97	Plasma confinement at JET. Plasma Physics and Controlled Fusion, 2016, 58, 014034.	2.1	28
98	Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data. Nuclear Materials and Energy, 2017, 12, 559-563.	1.3	28
99	Numerical effects on energy distribution functions in particle-in-cell simulations with Monte Carlo collisions: choosing numerical parameters. Plasma Sources Science and Technology, 2013, 22, 055001.	3.1	27
100	Characterisation of the deuterium recycling at the W divertor target plates in JET during steady-state plasma conditions and ELMs. Physica Scripta, 2016, T167, 014076.	2.5	27
101	Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes. Nuclear Fusion, 2017, 57, 022009.	3.5	27
102	Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET. Plasma Physics and Controlled Fusion, 2017, 59, 035003.	2.1	27
103	Electric field nonlinearity in very high frequency capacitive discharges at constant electron plasma frequency. Plasma Sources Science and Technology, 2020, 29, 045003.	3.1	27
104	Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection. Physics of Plasmas, 2013, 20, .	1.9	26
105	An Analytical Expression for the Electric Field and Particle Tracing in Modelling of Be Erosion Experiments at the JET ITERâ€like Wall. Contributions To Plasma Physics, 2016, 56, 640-645.	1.1	26
106	Technological exploitation of Deuterium–Tritium operations at JET in support of ITER design, operation and safety. Fusion Engineering and Design, 2016, 109-111, 278-285.	1.9	26
107	The effect of intermediate frequency on sheath dynamics in collisionless current driven triple frequency capacitive plasmas. Physics of Plasmas, 2017, 24, .	1.9	26
108	Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C. Plasma Physics and Controlled Fusion, 2017, 59, 014014.	2.1	26

#	Article	IF	CITATIONS
109	Electric field filamentation and higher harmonic generation in very high frequency capacitive discharges. Journal Physics D: Applied Physics, 2019, 52, 365201.	2.8	26
110	On the global model approximation. Plasma Sources Science and Technology, 2009, 18, 045024.	3.1	25
111	Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas. Plasma Physics and Controlled Fusion, 2016, 58, 045011.	2.1	25
112	Plasma impact on diagnostic mirrors in JET. Nuclear Materials and Energy, 2017, 12, 506-512.	1.3	25
113	Boundary Conditions and Particle Loading for the Modeling of a Semi-infinite Plasma. Journal of Computational Physics, 2001, 172, 348-355.	3.8	24
114	The temporal evolution in plasma potential during laser photo-detachment used to diagnose electronegative plasma. Plasma Sources Science and Technology, 2011, 20, 055003.	3.1	24
115	Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade. Review of Scientific Instruments, 2016, 87, 11E717.	1.3	24
116	Experimental investigation of geodesic acoustic modes on JET using Doppler backscattering. Nuclear Fusion, 2016, 56, 106026.	3.5	24
117	Behaviour of a planar Langmuir probe in a laser ablation plasma. Applied Surface Science, 2005, 247, 134-138.	6.1	23
118	Electron heating mode transitions in dual frequency capacitive discharges. Applied Physics Letters, 2006, 89, 231502.	3.3	23
119	Asymmetric toroidal eddy currents (ATEC) to explain sideways forces at JET. Nuclear Fusion, 2016, 56, 106010.	3.5	23
120	Sawtooth pacing with on-axis ICRH modulation in JET-ILW. Nuclear Fusion, 2017, 57, 036027.	3.5	23
121	Determination of isotope ratio in the divertor of JET-ILW by high-resolution $H(i)^{1}+(i)$ spectroscopy: Hae^{u} D experiment and implications for Hae^{u} D experiment and implications for Hae^{u} D experiment and implications for Hae^{u} D experiment. Nuclear Fusion, 2019, 59, 046011.	3.5	23
122	Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 144023.	1.5	22
123	Probing negative ion density and temperature using a resonance hairpin probe. Plasma Sources Science and Technology, 2015, 24, 022001.	3.1	22
124	Gyrokinetic study of turbulence suppression in a JET-ILW power scan. Plasma Physics and Controlled Fusion, 2016, 58, 115005.	2.1	22
125	Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors. Review of Scientific Instruments, 2016, 87, 11D822.	1.3	22
126	Computer Simulation in Lowâ€Temperature Plasma Physics: Future Challenges. Plasma Processes and Polymers, 2017, 14, 1600121.	3.0	22

#	Article	IF	CITATIONS
127	Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW. Nuclear Fusion, 2017, 57, 016012.	3.5	22
128	14 MeV calibration of JET neutron detectorsâ€"phase 1: calibration and characterization of the neutron source. Nuclear Fusion, 2018, 58, 026012.	3.5	22
129	Influence of select discharge parameters on electric field transients triggered in collisionless very high frequency capacitive discharges. Physics of Plasmas, 2019, 26, .	1.9	22
130	Modeling of the self-sustained, discharge-excited xenon-chloride laser. IEEE Transactions on Plasma Science, 1991, 19, 350-360.	1.3	21
131	Investigation of the Formation Mechanism of Aligned Nano-Structured Siloxane Coatings Deposited Using an Atmospheric Plasma Jet. Plasma Processes and Polymers, 2013, 10, 888-903.	3.0	21
132	Radiation asymmetries during the thermal quench of massive gas injection disruptions in JET. Nuclear Fusion, 2015, 55, 123027.	3.5	21
133	Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment. Nuclear Fusion, 2015, 55, 083006.	3.5	21
134	Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation. Journal Physics D: Applied Physics, 2014, 47, 285201.	2.8	20
135	Non-linear MHD simulations of ELMs in JET and quantitative comparisons to experiments. Plasma Physics and Controlled Fusion, 2016, 58, 014026.	2.1	20
136	Deuterium trapping and release in JET ITER-like wall divertor tiles. Physica Scripta, 2016, T167, 014074.	2.5	20
137	ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET. Fusion Engineering and Design, 2017, 123, 171-176.	1.9	20
138	Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges. Journal Physics D: Applied Physics, 2013, 46, 285203.	2.8	19
139	A radio-frequency sheath model for complex waveforms. Applied Physics Letters, 2014, 104, .	3.3	19
140	Collisionless sheath heating in current-driven capacitively coupled plasma discharges via higher order sinusoidal signals. Plasma Sources Science and Technology, 2015, 24, 025037.	3.1	19
141	Neutronics experiments and analyses in preparation of DT operations at JET. Fusion Engineering and Design, 2016, 109-111, 895-905.	1.9	19
142	JET experiments with tritium and deuterium–tritium mixtures. Fusion Engineering and Design, 2016, 109-111, 925-936.	1.9	19
143	Electromagnetic shockâ€wave generation in a lumped element delay line containing nonlinear ferroelectric capacitors. Applied Physics Letters, 1990, 56, 2471-2473.	3.3	18
144	One-dimensional simulation of an ion beam generated by a current-free double-Layer. IEEE Transactions on Plasma Science, 2005, 33, 334-335.	1.3	18

#	Article	IF	CITATIONS
145	L to H mode transition: parametric dependencies of the temperature threshold. Nuclear Fusion, 2015, 55, 073015.	3.5	18
146	High performance detectors for upgraded gamma ray diagnostics for JET DT campaigns. Physica Scripta, 2016, 91, 064003.	2.5	18
147	Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas. Review of Scientific Instruments, 2016, 87, 11D823.	1.3	18
148	Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces. Physica Scripta, 2016, T167, 014077.	2.5	18
149	Experience of handling beryllium, tritium and activated components from JET ITER like wall. Physica Scripta, 2016, T167, 014057.	2.5	18
150	The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 4-11.	1.4	18
151	Application of transfer entropy to causality detection and synchronization experiments in tokamaks. Nuclear Fusion, 2016, 56, 026006.	3.5	18
152	Energy balance in JET. Nuclear Materials and Energy, 2017, 12, 227-233.	1.3	18
153	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18
154	Modeling the selfâ€sustained dischargeâ€excited XeCl laser in two dimensions. Journal of Applied Physics, 1992, 71, 2113-2122.	2.5	17
155	Threeâ€Dimensional Fluid Model for Atmospheric Pressure Dielectric Barrier Discharge Plasma. Plasma Processes and Polymers, 2015, 12, 1104-1116.	3.0	17
156	Physics of Cold Plasma., 2016,, 17-51.		17
157	Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and <i>E</i> à€‰â€‰Ã—â€‰â€‰ <i>B</i> stabilization in JET high-performance discharges. Plasma Physics and CFusion, 2016, 58, 125018.	C an trolled	17
158	Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW. Nuclear Materials and Energy, 2016, 9, 604-609.	1.3	17
159	Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices. Nuclear Materials and Energy, 2017, 12, 3-17.	1.3	17
160	High-resolution tungsten spectroscopy relevant to the diagnostic of high-temperature tokamak plasmas. Physical Review A, 2018, 97, .	2.5	17
161	"Anomalous―collisionality in low-pressure plasmas. Physics of Plasmas, 2013, 20, 124503.	1.9	16
162	Theory for the self-bias formation in capacitively coupled plasmas excited by arbitrary waveforms. Plasma Sources Science and Technology, 2013, 22, 065013.	3.1	16

#	Article	IF	Citations
163	Possible influence of near SOL plasma on the H-mode power threshold. Nuclear Materials and Energy, 2017, 12, 273-277.	1.3	16
164	Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes. Nuclear Fusion, 2017, 57, 036017.	3. 5	16
165	High frequency sheath modulation and higher harmonic generation in a low pressure very high frequency capacitively coupled plasma excited by sawtooth waveform. Plasma Sources Science and Technology, 2020, 29, 114001.	3.1	16
166	Investigation of atomic oxygen density in a capacitively coupled O ₂ /SF ₆ discharge using two-photon absorption laser-induced fluorescence spectroscopy and a Langmuir probe. Plasma Sources Science and Technology, 2013, 22, 045013.	3.1	15
167	Verification of particle-in-cell simulations with Monte Carlo collisions. Plasma Sources Science and Technology, 2016, 25, 054007.	3.1	15
168	Investigation of the electron kinetics in O2capacitively coupled plasma with the use of a Langmuir probe. Plasma Sources Science and Technology, 2017, 26, 065009.	3.1	15
169	Equivalence of the hard-wall and kinetic-fluid models of collisionless electron heating in capacitively coupled discharges. Plasma Sources Science and Technology, 2014, 23, 015016.	3.1	14
170	Influence of Gap Spacing between Dielectric Barriers in Atmospheric Pressure Discharges. Contributions To Plasma Physics, 2015, 55, 444-458.	1.1	14
171	Deep deuterium retention and Be/W mixing at tungsten coated surfaces in the JET divertor. Physica Scripta, 2016, T167, 014061.	2.5	14
172	How to assess the efficiency of synchronization experiments in tokamaks. Nuclear Fusion, 2016, 56, 076008.	3.5	14
173	Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall. Physica Scripta, 2016, T167, 014052.	2.5	14
174	Raman microscopy investigation of beryllium materials. Physica Scripta, 2016, T167, 014027.	2.5	14
175	Beryllium film deposition in cavity samples in remote areas of the JET divertor during the 2011–2012 ITER-like wall campaign. Nuclear Materials and Energy, 2017, 12, 548-552.	1.3	14
176	Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall. Fusion Engineering and Design, 2017, 116, 1-4.	1.9	14
177	Structure, tritium depth profile and desorption from †plasma-facing' beryllium materials of ITER-Like-Wall at JET. Nuclear Materials and Energy, 2017, 12, 642-647.	1.3	14
178	Ion flow and sheath physics studies in multiple ion species plasmas using diode laser based laser-induced fluorescence. Thin Solid Films, 2006, 506-507, 674-678.	1.8	13
179	Electron heating in multiple-frequency capacitive discharges. Plasma Physics and Controlled Fusion, 2006, 48, B231-B237.	2.1	13
180	Radiation damage and nuclear heating studies in selected functional materials during the JET DT campaign. Fusion Engineering and Design, 2016, 109-111, 1011-1015.	1.9	13

#	Article	IF	Citations
181	High power neon seeded JET discharges: Experiments and simulations. Nuclear Materials and Energy, 2017, 12, 882-886.	1.3	13
182	Comparative H-mode density limit studies in JET and AUG. Nuclear Materials and Energy, 2017, 12, 100-110.	1.3	13
183	Deuterium retention in the divertor tiles of JET ITER-Like wall. Nuclear Materials and Energy, 2017, 12, 655-661.	1.3	13
184	Precise Definition of a "Monolayer Point―in Polymer Brush Films for Fabricating Highly Coherent TiO ₂ Thin Films by Vapor-Phase Infiltration. Langmuir, 2020, 36, 12394-12402.	3.5	13
185	Gyrokinetic modeling of impurity peaking in JET H-mode plasmas. Physics of Plasmas, 2017, 24, .	1.9	13
186	Plasma asymmetry and electron and ion energy distribution function in capacitive discharges excited by tailored waveforms. Journal Physics D: Applied Physics, 2022, 55, 275202.	2.8	13
187	Properties of a differentially pumped constricted hollow anode plasma source. Plasma Sources Science and Technology, 2011, 20, 015024.	3.1	12
188	Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation. Nuclear Fusion, 2015, 55, 113016.	3.5	12
189	Diagnostic application of magnetic islands rotation in JET. Nuclear Fusion, 2016, 56, 076004.	3.5	12
190	Studies of Be migration in the JET tokamak using AMS with 10Be marker. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 370-375.	1.4	12
191	A tool to support the construction of reliable disruption databases. Fusion Engineering and Design, 2017, 125, 139-153.	1.9	12
192	Erosion at the inner wall of JET during the discharge campaign 2013–2014. Nuclear Materials and Energy, 2017, 11, 20-24.	1.3	12
193	Driving frequency effect on discharge parameters and higher harmonic generation in capacitive discharges at constant power densities. Journal Physics D: Applied Physics, 2021, 54, 055205.	2.8	12
194	On the interpretation of high-resolution x-ray spectra from JET with an ITER-like wall. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 144028.	1.5	11
195	Neutron streaming along ducts and labyrinths at the JET biological shielding: Effect of concrete composition. Radiation Physics and Chemistry, 2015, 116, 359-364.	2.8	11
196	Upgrade of the tangential gamma-ray spectrometer beam-line for JET DT experiments. Fusion Engineering and Design, 2017, 123, 749-753.	1.9	11
197	Spatial Uniformity of Atmospheric Pressure Discharges: A Simulation Study. Contributions To Plasma Physics, 2014, 54, 756-771.	1.1	10
198	Power modulation in an atmospheric pressure plasma jet. Plasma Sources Science and Technology, 2014, 23, 065012.	3.1	10

#	Article	IF	Citations
199	An FPGA-based bolometer for the MAST-U Super-X divertor. Review of Scientific Instruments, 2016, 87, 11E721.	1.3	10
200	Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system. Review of Scientific Instruments, 2016, 87, 023501.	1.3	10
201	Extending helium partial pressure measurement technology to JET DTE2 and ITER. Review of Scientific Instruments, 2016, 87, 11D442.	1.3	10
202	Advanced design of the Mechanical Tritium Pumping System for JET DTE2. Fusion Engineering and Design, 2016, 109-111, 359-364.	1.9	10
203	Tritium distributions on tungsten and carbon tiles used in the JET divertor. Physica Scripta, 2016, T167, 014009.	2.5	10
204	In situ wavelength calibration of the edge CXS spectrometers on JET. Review of Scientific Instruments, 2016, 87, 11E525.	1.3	10
205	Technical preparations for the in-vessel 14 MeV neutron calibration at JET. Fusion Engineering and Design, 2017, 117, 107-114.	1.9	10
206	Status of ITER material activation experiments at JET. Fusion Engineering and Design, 2017, 124, 1150-1155.	1.9	10
207	The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas. Nuclear Materials and Energy, 2017, 12, 791-797.	1.3	10
208	An analytical expression for ion velocities at the wall including the sheath electric field and surface biasing for erosion modeling at JET ILW. Nuclear Materials and Energy, 2017, 12, 341-345.	1.3	10
209	Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign. Nuclear Materials and Energy, 2019, 18, 258-261.	1.3	10
210	Dielectric covered hairpin probe for its application in reactive plasmas. Applied Physics Letters, 2012, 101, 042105.	3.3	9
211	Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond. Review of Scientific Instruments, 2016, 87, 11D835.	1.3	9
212	JET diagnostic enhancements in preparation for DT operations. Review of Scientific Instruments, 2016, 87, 11D443.	1.3	9
213	Hardware architecture of the data acquisition and processing system for the JET Neutron Camera Upgrade (NCU) project. Fusion Engineering and Design, 2017, 123, 873-876.	1.9	9
214	The emissivity of W coatings deposited on carbon materials for fusion applications. Fusion Engineering and Design, 2017, 114 , $192-195$.	1.9	9
215	Response of the imaging cameras to hard radiation during JET operation. Fusion Engineering and Design, 2017, 123, 669-673.	1.9	9
216	A model for tailored-waveform radiofrequency sheaths. Journal Physics D: Applied Physics, 2017, 50, 23LT02.	2.8	9

#	Article	IF	CITATIONS
217	lon energy distribution function in very high frequency capacitive discharges excited by saw-tooth waveform. Physics of Plasmas, 2021, 28, .	1.9	9
218	European negative ion based neutral beam developments. Fusion Engineering and Design, 1995, 26, 407-413.	1.9	8
219	Instabilities and pattern formation in low temperature plasmas. Applied Mathematics Letters, 2005, 18 , $865-873$.	2.7	8
220	Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher. Journal of Applied Physics, 2013, 113, 163302.	2.5	8
221	Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma. Physics of Plasmas, 2014, 21, 123510.	1.9	8
222	Effect of Mass and Charge of Ionic Species on Spatioâ€Temporal Evolution of Transient Electric Field in CCP Discharges. Contributions To Plasma Physics, 2015, 55, 331-336.	1.1	8
223	Plasma isotopic changeover experiments in JET under carbon and ITER-like wall conditions. Nuclear Fusion, 2015, 55, 043021.	3.5	8
224	Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet. Plasma Sources Science and Technology, 2016, 25, 045023.	3.1	8
225	Characterization of a diamond detector to be used as neutron yield monitor during the in-vessel calibration of JET neutron detectors in preparation of the DT experiment. Fusion Engineering and Design, 2016, 106, 93-98.	1.9	8
226	On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection. Nuclear Fusion, 2017, 57, 016027.	3.5	8
227	A locked mode indicator for disruption prediction on JET and ASDEX upgrade. Fusion Engineering and Design, 2019, 138, 254-266.	1.9	8
228	Performance of a Floating Hairpin Probe in Strongly Magnetized Plasma. Contributions To Plasma Physics, 2010, 50, 903-908.	1.1	7
229	Real-time control of electron density in a capacitively coupled plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 031302.	2.1	7
230	Investigation of absolute atomic fluorine density in a capacitively coupled SF ₆ /O _{/C_{/Ar and SF₆/Ar discharge. Plasma Sources Science and Technology, 2014, 23, 065029.}}	3.1	7
231	Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid. Plasma Physics and Controlled Fusion, 2015, 57, 035003.	2.1	7
232	Three-Dimensional Coupled Fluid-Droplet Model for Atmospheric Pressure Plasmas. Plasma Processes and Polymers, 2015, 12, 201-213.	3.0	7
233	Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation. Review of Scientific Instruments, 2016, 87, 013507.	1.3	7
234	Comparison of dust transport modelling codes in a tokamak plasma. Physics of Plasmas, 2016, 23, 102506.	1.9	7

#	Article	IF	CITATIONS
235	Real-time control of ELM and sawtooth frequencies: similarities and differences. Nuclear Fusion, 2016, 56, 016008.	3.5	7
236	JET experience on managing radioactive waste and implications for ITER. Fusion Engineering and Design, 2016, 109-111, 979-985.	1.9	7
237	Advances in understanding and utilising ELM control in JET. Plasma Physics and Controlled Fusion, 2016, 58, 014017.	2.1	7
238	Commissioning and first results of the reinstated JET ICRF ILA. Fusion Engineering and Design, 2017, 123, 285-288.	1.9	7
239	The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign. Fusion Engineering and Design, 2017, 123, 1039-1043.	1.9	7
240	Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors. Nuclear Materials and Energy, 2017, 12, 91-99.	1.3	7
241	Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction. Nuclear Materials and Energy, 2017, 12, 234-240.	1.3	7
242	Influence of plasma background including neutrals on scrape-off layer filaments using 3D simulations. Nuclear Materials and Energy, 2017, 12, 825-830.	1.3	7
243	Real time control developments at JET in preparation for deuterium-tritium operation. Fusion Engineering and Design, 2017, 123, 535-540.	1.9	7
244	Improved neutron activation dosimetry for fusion. Fusion Engineering and Design, 2019, 139, 109-114.	1.9	7
245	Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall. Plasma Physics and Controlled Fusion, 2015, 57, 065002.	2.1	6
246	Integrated core–SOL–divertor modelling for ITER including impurity: effect of tungsten on fusion performance in H-mode and hybrid scenario. Nuclear Fusion, 2015, 55, 053032.	3.5	6
247	Simulating the nitrogen migration in Be/W tokamaks with WallDYN. Physica Scripta, 2016, T167, 014079.	2.5	6
248	ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations. Review of Scientific Instruments, 2016, 87, 104705.	1.3	6
249	Sparse representation of signals: from astrophysics to real-time data analysis for fusion plasmas and system optimization analysis for ITER and TCV. Plasma Physics and Controlled Fusion, 2016, 58, 123001.	2.1	6
250	Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography. Review of Scientific Instruments, 2016, 87, 013502.	1.3	6
251	COREDIV and SOLPS Numerical Simulations of the Nitrogen Seeded JET ILW Lâ€mode Discharges. Contributions To Plasma Physics, 2016, 56, 760-765.	1.1	6
252	Effect of PFC Recycling Conditions on JET Pedestal Density. Contributions To Plasma Physics, 2016, 56, 754-759.	1.1	6

#	Article	IF	CITATIONS
253	Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture. Fusion Engineering and Design, 2016, 112, 1014-1018.	1.9	6
254	Investigation on the erosion/deposition processes in the ITER-like wall divertor at JET using glow discharge optical emission spectrometry technique. Physica Scripta, 2016, T167, 014049.	2.5	6
255	The effect of lower hybrid waves on JET plasma rotation. Nuclear Fusion, 2017, 57, 034002.	3.5	6
256	Quartz micro-balance results of pulse-resolved erosion/deposition in the JET-ILW divertor. Nuclear Materials and Energy, 2017, 12, 478-482.	1.3	6
257	From hierarchies to networks: The organizational evolution of the international drug trade. International Journal of Law, Crime and Justice, 2020, 63, 100436.	0.8	6
258	The merits of ion cyclotron resonance heating schemes for sawtooth control in tokamak plasmas. Journal of Plasma Physics, 2015, 81, .	2.1	5
259	Core fusion power gain and alpha heating in JET, TFTR, and ITER. Nuclear Fusion, 2016, 56, 056002.	3.5	5
260	Neutronic analysis of JET external neutron monitor response. Fusion Engineering and Design, 2016, 109-111, 99-103.	1.9	5
261	The non-thermal origin of the tokamak low-density stability limit. Nuclear Fusion, 2016, 56, 056010.	3.5	5
262	Plasma turbulence measured with fast frequency swept reflectometry in JET H-mode plasmas. Nuclear Fusion, 2016, 56, 126019.	3.5	5
263	Hybrid cancellation of ripple disturbances arising in AC/DC converters. Automatica, 2017, 77, 344-352.	5.0	5
264	Generation of the neutron response function of an NE213 scintillator for fusion applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866, 222-229.	1.6	5
265	Development of MPPC-based detectors for high count rate DT campaigns at JET. Fusion Engineering and Design, 2017, 123, 940-944.	1.9	5
266	Experimental investigation of electron heating modes in capacitively coupled radio-frequency oxygen discharge. Plasma Sources Science and Technology, 2019, 28, 115008.	3.1	5
267	Investigations of Dropletâ€Plasma Interaction using Multiâ€Dimensional Coupled Model. Contributions To Plasma Physics, 2015, 55, 627-642.	1.1	4
268	The global build-up to intrinsic edge localized mode bursts seen in divertor full flux loops in JET. Physics of Plasmas, 2015, 22, .	1.9	4
269	Two-Dimensional Integrated Model for Interaction of Liquid Droplets with Atmospheric Pressure Plasma. Plasma Processes and Polymers, 2015, 12, 1256-1270.	3.0	4
270	Conceptual Design of the Mechanical Tritium Pumping System for JET DTE2. Fusion Science and Technology, 2015, 68, 630-634.	1.1	4

#	Article	IF	CITATIONS
271	Scaling of the frequencies of the type one edge localized modes and their effect on the tungsten source in JET ITER-like wall. Plasma Physics and Controlled Fusion, 2016, 58, 125014.	2.1	4
272	A prototype fully digital data acquisition system upgrade for the TOFOR neutron spectrometer at JET. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 833, 94-104.	1.6	4
273	Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas. Physics of Plasmas, 2016, 23, 012505.	1.9	4
274	Risk Mitigation for ITER by a Prolonged and Joint International Operation of JET. Journal of Fusion Energy, 2016, 35, 85-93.	1.2	4
275	Calculation of the profile-dependent neutron backscatter matrix for the JET neutron camera system. Fusion Engineering and Design, 2017, 123, 865-868.	1.9	4
276	CeBr3–based detector for gamma-ray spectrometer upgrade at JET. Fusion Engineering and Design, 2017, 123, 986-989.	1.9	4
277	Determining the prediction limits of models and classifiers with applications for disruption prediction in JET. Nuclear Fusion, 2017, 57, 016024.	3.5	4
278	Influence of plasma background on 3D scrape-off layer filaments. Plasma Physics and Controlled Fusion, 2019, 61, 025008.	2.1	4
279	Displacement of Charge and Conduction Current in Collisionless Planar Sheaths During Voltage Transients. Contributions To Plasma Physics, 2008, 48, 412-417.	1.1	3
280	Robust regression with CUDA and its application to plasma reflectometry. Review of Scientific Instruments, 2015, 86, 113507.	1.3	3
281	Free boundary equilibrium in 3D tokamaks with toroidal rotation. Nuclear Fusion, 2015, 55, 063032.	3.5	3
282	Comparative gyrokinetic analysis of JET baseline H-mode core plasmas with carbon wall and ITER-like wall. Plasma Physics and Controlled Fusion, 2016, 58, 045021.	2.1	3
283	A classification scheme for edge-localized modes based on their probability distributions. Review of Scientific Instruments, 2016, 87, 11D404.	1.3	3
284	Numerical calculations of non-inductive current driven by microwaves in JET. Plasma Physics and Controlled Fusion, 2016, 58, 125001.	2.1	3
285	JET Tokamak, preparation of a safety case for tritium operations. Fusion Engineering and Design, 2016, 109-111, 1308-1312.	1.9	3
286	Kinematic background discrimination methods using a fully digital data acquisition system for TOFOR. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838, 82-88.	1.6	3
287	Modelling of the JET DT Experiments in Carbon and ITER-like Wall Configurations. Contributions To Plasma Physics, 2016, 56, 766-771.	1.1	3
288	The global build-up to intrinsic ELM bursts and comparison with pellet triggered ELMs seen in JET. Nuclear Fusion, 2017, 57, 022017.	3 . 5	3

#	Article	IF	CITATIONS
289	A 3D electromagnetic model of the iron core in JET. Fusion Engineering and Design, 2017, 123, 527-531.	1.9	3
290	Nonlinear dynamic analysis of Dî \pm signals for type I edge localized modes characterization on JET with a carbon wall. Plasma Physics and Controlled Fusion, 2018, 60, 025010.	2.1	3
291	Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion Engineering and Design, 2019, 139, 115-123.	1.9	3
292	Dynamics of scrape-off layer filaments in detached conditions. Nuclear Fusion, 2020, 60, 126047.	3 . 5	3
293	Relations between preionization density distribution, electrode design, and efficiency in highâ€pressure dischargeâ€excited gas lasers. Applied Physics Letters, 1993, 63, 2866-2868.	3.3	2
294	A numerical method for a singular perturbation problem arising in the modelling of plasma sheaths. International Journal of Computing Science and Mathematics, 2007, 1, 322.	0.3	2
295	Attenuation of wall disturbances in an electron cyclotron resonance oxygen–argon plasma using real time control. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 041301.	2.1	2
296	Studies of the non-axisymmetric plasma boundary displacement in JET in presence of externally applied magnetic field. Plasma Physics and Controlled Fusion, 2015, 57, 104003.	2.1	2
297	lon temperature and toroidal rotation in JET's low torque plasmas. Review of Scientific Instruments, 2016, 87, 11E557.	1.3	2
298	A generalized Abel inversion method for gamma-ray imaging of thermonuclear plasmas. Journal of Instrumentation, 2016, 11, C03001-C03001.	1.2	2
299	Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W. Physica Scripta, 2016, T167, 014028.	2.5	2
300	Modelling of plasma-edge and plasma–wall interaction physics at JET with the metallic first-wall. Physica Scripta, 2016, T167, 014078.	2.5	2
301	Methods of theoretical analysis and computer modelling of the shaping of electrical pulses by nonlinear transmission lines and lumped-element delay lines. , 0, , .		1
302	Multidimensional Kinetic-Fluid Simulation of Inductive Discharges. Japanese Journal of Applied Physics, 1997, 36, 4784-4788.	1.5	1
303	Modelling of radio frequency sheaths for plasma processing. European Physical Journal D, 1998, 48, 59-69.	0.4	1
304	Novel technique for the extraction of ionization profiles from spatial density measurements. Review of Scientific Instruments, 2001, 72, 4362-4365.	1.3	1
305	Modelling of dual-frequency capacitive discharges. Computer Physics Communications, 2007, 177, 88-92.	7.5	1
306	Verification of particle-in-cell simulations with Monte Carlo collisions against exact solutions of the Boltzmann-Poisson equations. , 2015 , , .		1

#	Article	IF	Citations
307	X-ray micro-laminography for the <i>ex situ </i>) analysis of W-CFC samples retrieved from JET ITER-like wall. Physica Scripta, 2016, T167, 014050.	2.5	1
308	Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045001.	1.5	1
309	On determining the prediction limits of mathematical models for time series. Journal of Instrumentation, 2016, 11, C07013-C07013.	1.2	1
310	Variable statistical weights for particle species in pic-mcc simulations. AIP Conference Proceedings, 1996, , .	0.4	0
311	Experimental investigation of power deposition and ionization kinetics in an inductively coupled discharge. , 0, , .		0
312	Kinetic simulation of positive column instabilities. , 0, , .		0
313	Particle in cell simulation of dual frequency capacitive discharges. , 0, , .		0
314	Collisionless Heating in Capacitively-Coupled Radio Frequency Discharges., 2002,, 313-328.		0
315	Collisionless heating by capacitive radio frequency sheaths. , 0, , .		0
316	Standing wave and skin effects in large area, high frequency capacitive discharges., 0,,.		0
317	Introducing hairpin probe for electron density measurement in a KAMABOKO-III negative ion source. , 2011, , .		0
318	Study of resonant properties of hairpin probe for high-density operation., 2011,,.		0
319	Benchmarking of particle-in-cell simulations with monte carlo collisions. , 2012, , .		0
320	Simulation study of stochastic heating in dual frequency capacitively coupled plasma discharges. , 2012, , .		0
321	Study of stochastic heating using particle-in-cell simulation in single frequency capacitively coupled plasma discharges. , 2012, , .		0
322	Transient properties of anodic glow in constricted anode plasma source. , 2012, , .		0
323	Electro-negative plasma diagnostic using pulse bias hairpin probe., 2012,,.		0
324	Divertor impurity injection using high voltage arcs for impurity transport studies on the Mega Amp Spherical Tokamak. Review of Scientific Instruments, 2014, 85, 123503.	1.3	0

#	Article	IF	CITATIONS
325	Leap frog integrator modifications in highly collisional particle-in-cell codes. Journal of Computational Physics, 2014, 268, 355-362.	3.8	0
326	Errors and uncertainty in complex plasma chemistry models. , 2015, , .		0
327	Preface: Bioplasmas and Plasmas with Liquids. Plasma Medicine, 2016, 6, v-vi.	0.6	0
328	Classification of JET Neutron and Gamma Emissivity Profiles. Journal of Instrumentation, 2016, 11, C05021-C05021.	1,2	0
329	MHD marking using the MSE polarimeter optics in ILW JET plasmas. Review of Scientific Instruments, 2016, 87, 11E556.	1.3	O
330	Characteristics of pre-ELM structures during ELM control experiment on JET withn  =  2 magnet perturbations. Nuclear Fusion, 2016, 56, 092011.	ic 3.5	0
331	Two-Dimensional Patterns in High Frequency Plasma Discharges. Mathematics in Industry, 2006, , 605-609.	0.3	O