List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/225507/publications.pdf Version: 2024-02-01

DENIS DADÃO

#	Article	IF	CITATIONS
1	Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear. Physiological Reviews, 2010, 90, 419-463.	28.8	871
2	New Vistas on Amygdala Networks in Conditioned Fear. Journal of Neurophysiology, 2004, 92, 1-9.	1.8	801
3	Amygdala Microcircuits Controlling Learned Fear. Neuron, 2014, 82, 966-980.	8.1	604
4	Amygdala intercalated neurons are required for expression of fear extinction. Nature, 2008, 454, 642-645.	27.8	432
5	Synaptic correlates of fear extinction in the amygdala. Nature Neuroscience, 2010, 13, 489-494.	14.8	344
6	An Inhibitory Interface Gates Impulse Traffic between the Input and Output Stations of the Amygdala. Journal of Neuroscience, 1999, 19, 10575-10583.	3.6	305
7	Amygdala oscillations and the consolidation of emotional memories. Trends in Cognitive Sciences, 2002, 6, 306-314.	7.8	275
8	Role of the basolateral amygdala in memory consolidation. Progress in Neurobiology, 2003, 70, 409-420.	5.7	248
9	The Bed Nucleus of the Stria Terminalis Mediates Inter-individual Variations in Anxiety and Fear. Journal of Neuroscience, 2009, 29, 10357-10361.	3.6	224
10	Projection Cells and Interneurons of the Lateral and Basolateral Amygdala: Distinct Firing Patterns and Differential Relation to Theta and Delta Rhythms in Conscious Cats. Journal of Neuroscience, 1996, 16, 3334-3350.	3.6	214
11	Glucocorticoids Enhance the Excitability of Principal Basolateral Amygdala Neurons. Journal of Neuroscience, 2007, 27, 4482-4491.	3.6	206
12	The Fear Circuit Revisited: Contributions of the Basal Amygdala Nuclei to Conditioned Fear. Journal of Neuroscience, 2011, 31, 15481-15489.	3.6	172
13	The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Progress in Neurobiology, 2004, 74, 101-110.	5.7	171
14	Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis. Journal of Neuroscience, 2016, 36, 8038-8049.	3.6	170
15	Coherent gamma oscillations couple the amygdala and striatum during learning. Nature Neuroscience, 2009, 12, 801-807.	14.8	169
16	Amygdala microcircuits mediating fear expression and extinction. Current Opinion in Neurobiology, 2012, 22, 717-723.	4.2	168
17	Differential innervation of parvalbumin-immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs. Journal of Comparative Neurology, 2000, 416, 496-508.	1.6	167
18	Central Amygdala Activity during Fear Conditioning. Journal of Neuroscience, 2011, 31, 289-294.	3.6	166

#	Article	IF	CITATIONS
19	Differential Fear Conditioning Induces Reciprocal Changes in the Sensory Responses of Lateral Amygdala Neurons to the CS+ and CS Learning and Memory, 2000, 7, 97-103.	1.3	159
20	Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions. Nature Neuroscience, 2006, 9, 1321-1329.	14.8	150
21	Cell-Type-Specific GABA Responses and Chloride Homeostasis in the Cortex and Amygdala. Journal of Neurophysiology, 2001, 86, 2887-2895.	1.8	143
22	Gamma Oscillations Coordinate Amygdalo-Rhinal Interactions during Learning. Journal of Neuroscience, 2007, 27, 9369-9379.	3.6	126
23	Impact of Basal Forebrain Cholinergic Inputs on Basolateral Amygdala Neurons. Journal of Neuroscience, 2015, 35, 853-863.	3.6	103
24	Slow and Fast (Gamma) Neuronal Oscillations in the Perirhinal Cortex and Lateral Amygdala. Journal of Neurophysiology, 2001, 85, 1661-1672.	1.8	100
25	Activity-Dependent Synaptic Plasticity in the Central Nucleus of the Amygdala. Journal of Neuroscience, 2005, 25, 1847-1855.	3.6	98
26	Theta synchronizes the activity of medial prefrontal neurons during learning. Learning and Memory, 2008, 15, 524-531.	1.3	98
27	Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. Journal of Neurophysiology, 2011, 105, 3054-3066.	1.8	96
28	Contextual Inhibitory Gating of Impulse Traffic in the Intraâ€∎mygdaloid Network. Annals of the New York Academy of Sciences, 2003, 985, 78-91.	3.8	95
29	Multi-dimensional Coding by Basolateral Amygdala Neurons. Neuron, 2018, 99, 1315-1328.e5.	8.1	93
30	Cat intraamygdaloid inhibitory network: Ultrastructural organization of parvalbumin-immunoreactive elements. , 1998, 391, 164-179.		84
31	Polarized Synaptic Interactions Between Intercalated Neurons of the Amygdala. Journal of Neurophysiology, 2000, 83, 3509-3518.	1.8	79
32	Amygdala Signaling during Foraging in a Hazardous Environment. Journal of Neuroscience, 2015, 35, 12994-13005.	3.6	79
33	Common oscillatory mechanisms across multiple memory systems. Npj Science of Learning, 2017, 2, .	2.8	77
34	Neuronal correlates of fear conditioning in the bed nucleus of the stria terminalis. Learning and Memory, 2013, 20, 633-641.	1.3	69
35	Learning-Related Facilitation of Rhinal Interactions by Medial Prefrontal Inputs. Journal of Neuroscience, 2007, 27, 6542-6551.	3.6	67
36	Low-Probability Transmission of Neocortical and Entorhinal Impulses Through the Perirhinal Cortex. Journal of Neurophysiology, 2004, 91, 2079-2089.	1.8	65

#	Article	IF	CITATIONS
37	Physiological Properties of Central Medial and Central Lateral Amygdala Neurons. Journal of Neurophysiology, 1999, 82, 1843-1854.	1.8	64
38	Physiological properties of central amygdala neurons: species differences. European Journal of Neuroscience, 2002, 15, 545-552.	2.6	61
39	Identification of Basolateral Amygdala Projection Cells and Interneurons Using Extracellular Recordings. Journal of Neurophysiology, 2006, 96, 3257-3265.	1.8	60
40	When scientific paradigms lead to tunnel vision: lessons from the study of fear. Npj Science of Learning, 2017, 2, .	2.8	58
41	Physiological basis for emotional modulation of memory circuits by the amygdala. Current Opinion in Neurobiology, 2013, 23, 381-386.	4.2	55
42	NMDA-dependent facilitation of corticostriatal plasticity by the amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 341-346.	7.1	52
43	Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. Journal of Neurophysiology, 2015, 114, 2903-2911.	1.8	51
44	Differential Recruitment of Competing Valence-Related Amygdala Networks during Anxiety. Neuron, 2017, 96, 81-88.e5.	8.1	51
45	Closed-loop control of gamma oscillations in the amygdala demonstrates their role in spatial memory consolidation. Nature Communications, 2019, 10, 3970.	12.8	51
46	Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: Ultrastructural study in guinea pigs. Journal of Comparative Neurology, 2006, 495, 722-734.	1.6	49
47	Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learning and Memory, 2013, 20, 421-430.	1.3	46
48	Assignment of Model Amygdala Neurons to the Fear Memory Trace Depends on Competitive Synaptic Interactions. Journal of Neuroscience, 2013, 33, 14354-14358.	3.6	45
49	Propagation of Neocortical Inputs in the Perirhinal Cortex. Journal of Neuroscience, 2001, 21, 2878-2888.	3.6	44
50	Bistable Behavior of Inhibitory Neurons Controlling Impulse Traffic through the Amygdala: Role of a Slowly Deinactivating K ⁺ Current. Journal of Neuroscience, 2000, 20, 9034-9039.	3.6	43
51	Muscarinic Control of Long-Range GABAergic Inhibition within the Rhinal Cortices. Journal of Neuroscience, 2007, 27, 4061-4071.	3.6	43
52	Contrasting distribution of physiological cell types in different regions of the bed nucleus of the stria terminalis. Journal of Neurophysiology, 2013, 110, 2037-2049.	1.8	43
53	Vigilance-Associated Gamma Oscillations Coordinate the Ensemble Activity of Basolateral Amygdala Neurons. Neuron, 2018, 97, 656-669.e7.	8.1	40
54	Embracing Complexity in Defensive Networks. Neuron, 2019, 103, 189-201.	8.1	38

#	Article	IF	CITATIONS
55	Morphology, PKCl̃´ expression, and synaptic responsiveness of different types of rat central lateral amygdala neurons. Journal of Neurophysiology, 2012, 108, 3196-3205.	1.8	37
56	Impact of infralimbic inputs on intercalated amygdala neurons: A biophysical modeling study. Learning and Memory, 2011, 18, 226-240.	1.3	36
57	Optogenetic Study of Anterior BNST and Basomedial Amygdala Projections to the Ventromedial Hypothalamus. ENeuro, 2018, 5, ENEURO.0204-18.2018.	1.9	36
58	Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions. Journal of Neurophysiology, 2015, 113, 2721-2732.	1.8	35
59	Intrinsic connections in the anterior part of the bed nucleus of the stria terminalis. Journal of Neurophysiology, 2013, 109, 2438-2450.	1.8	34
60	Feedback Inhibition Defines Transverse Processing Modules in the Lateral Amygdala. Journal of Neuroscience, 2003, 23, 1966-1973.	3.6	31
61	Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes. Journal of Neurophysiology, 2017, 117, 556-565.	1.8	31
62	CGRP Inhibits Neurons of the Bed Nucleus of the Stria Terminalis: Implications for the Regulation of Fear and Anxiety. Journal of Neuroscience, 2014, 34, 60-65.	3.6	30
63	Pupil Response to Threat in Traumaâ€Exposed Individuals With or Without PTSD. Journal of Traumatic Stress, 2015, 28, 370-374.	1.8	30
64	Mechanisms of Pavlovian fear conditioning: has the engram been located?. Trends in Neurosciences, 2002, 25, 436-437.	8.6	27
65	Synaptic Interactions Underlying Synchronized Inhibition in the Basal Amygdala: Evidence for Existence of Two Types of Projection Cells. Journal of Neurophysiology, 2011, 105, 687-696.	1.8	27
66	Cortical inputs innervate calbindinâ€immunoreactive interneurons of the rat basolateral amygdaloid complex. Journal of Comparative Neurology, 2014, 522, 1915-1928.	1.6	27
67	Different Multidimensional Representations across the Amygdalo-Prefrontal Network during an Approach-Avoidance Task. Neuron, 2020, 107, 717-730.e5.	8.1	24
68	High-frequency oscillations are prominent in the extended amygdala. Journal of Neurophysiology, 2014, 112, 110-119.	1.8	23
69	Measuring Correlations and Interactions Among Four Simultaneously Recorded Brain Regions During Learning. Journal of Neurophysiology, 2009, 101, 2507-2515.	1.8	21
70	Presynaptic induction and expression of NMDA-dependent LTP. Trends in Neurosciences, 2004, 27, 440-441.	8.6	20
71	Biologically based neural circuit modelling for the study of fear learning and extinction. Npj Science of Learning, 2016, 1, .	2.8	20
72	Midline thalamic inputs to the amygdala: Ultrastructure and synaptic targets. Journal of Comparative Neurology, 2019, 527, 942-956.	1.6	20

#	Article	IF	CITATIONS
73	Gamma Oscillations in the Basolateral Amygdala: Biophysical Mechanisms and Computational Consequences. ENeuro, 2019, 6, ENEURO.0388-18.2018.	1.9	19
74	Glutamatergic and gabaergic ventral BNST neurons differ in their physiological properties and responsiveness to noradrenaline. Neuropsychopharmacology, 2018, 43, 2126-2133.	5.4	18
75	Associative Properties of the Perirhinal Network. Cerebral Cortex, 2012, 22, 1318-1332.	2.9	17
76	Basolateral amygdala nucleus responses to appetitive conditioned stimuli correlate with variations in conditioned behaviour. Nature Communications, 2016, 7, 12275.	12.8	16
77	Basolateral amygdala neurons are activated during threat expectation. Journal of Neurophysiology, 2019, 121, 1761-1777.	1.8	16
78	Differential connectivity of short―vs. longâ€range extrinsic and intrinsic cortical inputs to perirhinal neurons. Journal of Comparative Neurology, 2013, 521, 2538-2550.	1.6	15
79	Electroresponsive properties of rat central medial thalamic neurons. Journal of Neurophysiology, 2016, 115, 1533-1541.	1.8	12
80	Optogenetic study of central medial and paraventricular thalamic projections to the basolateral amygdala. Journal of Neurophysiology, 2021, 126, 1234-1247.	1.8	11
81	Gamma Oscillations in the Basolateral Amygdala: Localization, Microcircuitry, and Behavioral Correlates. Journal of Neuroscience, 2021, 41, 6087-6101.	3.6	10
82	Human anterior insula signals salience and deviations from expectations via bursts of beta oscillations. Journal of Neurophysiology, 2022, 128, 160-180.	1.8	10
83	Mechanisms of memory storage in a model perirhinal network. Brain Structure and Function, 2017, 222, 183-200.	2.3	9
84	Detection of Multiway Gamma Coordination Reveals How Frequency Mixing Shapes Neural Dynamics. Neuron, 2019, 101, 603-614.e6.	8.1	9
85	Classification of Brainwaves Using Convolutional Neural Network. , 2019, 2019, .		9
86	Facilitation of Corticostriatal Plasticity by the Amygdala Requires Ca ²⁺ -Induced Ca ²⁺ Release in the Ventral Striatum. Journal of Neurophysiology, 2010, 104, 1673-1680.	1.8	8
87	Serotonergic control of GABAergic inhibition in the lateral amygdala. Journal of Neurophysiology, 2020, 123, 670-681.	1.8	6