Timothy W Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254316/publications.pdf

Version: 2024-02-01

81900 79698 6,943 78 39 73 citations g-index h-index papers 79 79 79 6313 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Effect of the FIFA 11 + with Added Neck Exercises on Maximal Isometric Neck Strength and Peak He Impact Magnitude During Heading: A Pilot Study. Sports Medicine, 2022, 52, 655-668.	ad 6.5	10
2	Improving Solute Clearances by Hemodialysis. Blood Purification, 2022, 51, 20-31.	1.8	3
3	Removal of Uremic Solutes from Dialysate by Activated Carbon. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 1168-1175.	4.5	7
4	Why Is the GFR So High?: Implications for the Treatment of Kidney Failure. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 980-987.	4.5	4
5	Metabolomic analysis of uremic pruritus in patients on hemodialysis. PLoS ONE, 2021, 16, e0246765.	2.5	14
6	The effect of ball characteristics on head acceleration during purposeful heading in male and female youth football players. Science and Medicine in Football, 2021, 5, 1-9.	2.0	7
7	Improving Clearance for Renal Replacement Therapy. Kidney360, 2021, 2, 1188-1195.	2.1	5
8	The incidence and characteristics of purposeful heading in male and female youth football (soccer) within Australia. Journal of Science and Medicine in Sport, 2021, 24, 603-608.	1.3	13
9	Precision medicine in transplantation and hemodialysis. Nephrology Dialysis Transplantation, 2021, 36, ii31-ii36.	0.7	2
10	Association of Plasma Uremic Solute Levels with Residual Kidney Function in Children on Peritoneal Dialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1531-1538.	4.5	3
11	Impaired Tubular Secretion of Organic Solutes in Advanced Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 2877-2884.	6.1	10
12	Barriers to Reducing Hemodialysis Time and Frequency in Patients with Residual Kidney Function. Journal of the American Society of Nephrology: JASN, 2021, 32, 2112-2116.	6.1	6
13	Contribution of â€~clinically negligible' residual kidney function to clearance of uremic solutes. Nephrology Dialysis Transplantation, 2020, 35, 846-853.	0.7	16
14	The Uremic Syndrome. , 2020, , 199-210.		1
15	Plasma pseudouridine levels reflect body size in children on hemodialysis. Pediatric Nephrology, 2020, 35, 305-312.	1.7	2
16	Twice-Weekly Hemodialysis Is an Option for Many Patients in Times of Dialysis Unit Stress. Journal of the American Society of Nephrology: JASN, 2020, 31, 1141-1142.	6.1	32
17	Impaired Tubular Secretion of Organic Solutes in Acute Kidney Injury. Kidney360, 2020, 1, 724-730.	2.1	1
18	Accumulation of uremic solutes in the cerebrospinal fluid in experimental acute renal failure. American Journal of Physiology - Renal Physiology, 2019, 317, F296-F302.	2.7	9

#	Article	IF	Citations
19	Intensive Hemodialysis Fails to Reduce Plasma Levels of Uremic Solutes. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 361-362.	4.5	13
20	Residual Function Effectively Controls Plasma Concentrations of Secreted Solutes in Patients on Twice Weekly Hemodialysis. Journal of the American Society of Nephrology: JASN, 2018, 29, 1992-1999.	6.1	30
21	Uremic Toxin Clearance and Cardiovascular Toxicities. Toxins, 2018, 10, 226.	3.4	61
22	Inflammation and Immunity Pathways Regulate Genetic Susceptibility to Diabetic Nephropathy. Diabetes, 2018, 67, 2096-2106.	0.6	42
23	Characteristics of Colon-Derived Uremic Solutes. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1398-1404.	4.5	73
24	Manipulating the microbiome. Kidney International, 2017, 91, 274-276.	5.2	2
25	Limited reduction in uremic solute concentrations with increased dialysis frequency and time inÂtheÂFrequent Hemodialysis Network Daily Trial. Kidney International, 2017, 91, 1186-1192.	5.2	55
26	Serum Asymmetric and Symmetric Dimethylarginine and Morbidity and Mortality in Hemodialysis Patients. American Journal of Kidney Diseases, 2017, 70, 48-58.	1.9	33
27	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
28	The Effect of Uremic Solutes on the Organic Cation Transporter 2. Journal of Pharmaceutical Sciences, 2017, 106, 2551-2557.	3.3	23
29	Results of the HEMO Study suggest that p-cresol sulfate and indoxyl sulfate are not associatedÂwithÂcardiovascular outcomes. Kidney International, 2017, 92, 1484-1492.	5.2	65
30	Free and total p-cresol sulfate levels and infectious hospitalizations in hemodialysis patients in CHOICE and HEMO. Medicine (United States), 2017, 96, e5799.	1.0	5
31	Trimethylamine N-Oxide and Cardiovascular Events in Hemodialysis Patients. Journal of the American Society of Nephrology: JASN, 2017, 28, 321-331.	6.1	132
32	Untargeted mass spectrometry discloses plasma solute levels poorly controlled by hemodialysis. PLoS ONE, 2017, 12, e0188315.	2.5	3
33	Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota. Cell Host and Microbe, 2016, 20, 709-715.	11.0	201
34	Effect of a sustained difference in hemodialytic clearance on the plasma levels of p-cresol sulfate and indoxyl sulfate. Nephrology Dialysis Transplantation, 2016, 31, 1335-1341.	0.7	29
35	Kt/Vurea and Nonurea Small Solute Levels in the Hemodialysis Study. Journal of the American Society of Nephrology: JASN, 2016, 27, 3469-3478.	6.1	51
36	Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3. Molecular Pharmaceutics, 2016, 13, 3130-3140.	4.6	79

#	Article	IF	Citations
37	More Dialysis Has Not Proven Much Better. Seminars in Dialysis, 2016, 29, 481-490.	1.3	4
38	Tubular Secretion in CKD. Journal of the American Society of Nephrology: JASN, 2016, 27, 2148-2155.	6.1	83
39	Free Levels of Selected Organic Solutes and Cardiovascular Morbidity and Mortality in Hemodialysis Patients: Results from the Retained Organic Solutes and Clinical Outcomes (ROSCO) Investigators. PLoS ONE, 2015, 10, e0126048.	2.5	75
40	An Enlarged Profile of Uremic Solutes. PLoS ONE, 2015, 10, e0135657.	2.5	68
41	Mechanism of Prominent Trimethylamine Oxide (TMAO) Accumulation in Hemodialysis Patients. PLoS ONE, 2015, 10, e0143731.	2.5	79
42	Exercise Promotes Collateral Artery Growth Mediated by Monocytic Nitric Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1862-1871.	2.4	32
43	Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Circulation Research, 2015, 117, 720-730.	4.5	197
44	Glomerular Effects of Age and APOL1. Journal of the American Society of Nephrology: JASN, 2015, 26, 2901-2903.	6.1	0
45	The Uremic Syndrome., 2015,, 83-91.		1
46	Prominent Accumulation in Hemodialysis Patients of Solutes Normally Cleared by Tubular Secretion. Journal of the American Society of Nephrology: JASN, 2014, 25, 615-622.	6.1	115
47	Effect of Increasing Dietary Fiber on Plasma Levels of Colon-Derived Solutes in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1603-1610.	4.5	235
48	Protein-Bound Molecules: A Large Family With a Bad Character. Seminars in Nephrology, 2014, 34, 106-117.	1.6	58
49	Approaches to Uremia. Journal of the American Society of Nephrology: JASN, 2014, 25, 2151-2158.	6.1	47
50	Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney International, 2014, 85, 1214-1224.	5.2	182
51	Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators. BMC Nephrology, 2013, 14, 134.	1.8	50
52	Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney International, 2013, 84, 585-590.	5.2	111
53	Selectively increasing the clearance of protein-bound uremic solutes. Nephrology Dialysis Transplantation, 2012, 27, 1574-1579.	0.7	67
54	Uremic solutes from colon microbes. Kidney International, 2012, 81, 949-954.	5.2	148

#	Article	IF	CITATIONS
55	The Removal of Protein-Bound Solutes by Dialysis. , 2012, 22, 203-206.		11
56	Dialysis Cannot be Dosed. Seminars in Dialysis, 2011, 24, 471-479.	1.3	37
57	Colonic Contribution to Uremic Solutes. Journal of the American Society of Nephrology: JASN, 2011, 22, 1769-1776.	6.1	340
58	Indoxyl Sulfate. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 3-4.	4.5	12
59	Contribution of Residual Function to Removal of Protein-Bound Solutes in Hemodialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 290-296.	4.5	91
60	The Pathophysiology of Uremia. , 2010, , 251-264.		2
61	Methylamine clearance by haemodialysis is low. Nephrology Dialysis Transplantation, 2010, 25, 1608-1613.	0.7	19
62	Effect of Increasing Dialyzer Mass Transfer Area Coefficient and Dialysate Flow on Clearance of Protein-Bound Solutes: A Pilot Crossover Trial. American Journal of Kidney Diseases, 2009, 53, 1042-1049.	1.9	68
63	Coated Carbon Hemoperfusion Provides Limited Clearance of Proteinâ€bound Solutes. Artificial Organs, 2008, 32, 717-724.	1.9	14
64	Removal of the Protein-Bound Solutes Indican and P-Cresol Sulfate by Peritoneal Dialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 85-90.	4.5	86
65	New insights into uremic toxicity. Current Opinion in Nephrology and Hypertension, 2008, 17, 560-565.	2.0	79
66	Increasing the Clearance of Protein-Bound Solutes by Addition of a Sorbent to the Dialysate. Journal of the American Society of Nephrology: JASN, 2007, 18, 868-874.	6.1	104
67	Uremia. New England Journal of Medicine, 2007, 357, 1316-1325.	27.0	403
68	The clearance of protein-bound solutes by hemofiltration and hemodiafiltration. Kidney International, 2005, 68, 867-877.	5.2	64
69	Removal of P-Cresol Sulfate by Hemodialysis. Journal of the American Society of Nephrology: JASN, 2005, 16, 3430-3436.	6.1	239
70	Increasing Dialysate Flow and Dialyzer Mass Transfer Area Coefficient to Increase the Clearance of Protein-bound Solutes. Journal of the American Society of Nephrology: JASN, 2004, 15, 1927-1935.	6.1	100
71	Tubular injury in glomerular disease. Kidney International, 2003, 63, 774-787.	5.2	51
72	Renal structural abnormalities following recovery from acute puromycin nephrosis. Kidney International, 2002, 62, 496-506.	5.2	16

#	Article	IF	CITATION
73	Glomerular Injury and Tubular Loss in Adriamycin Nephrosis. Journal of the American Society of Nephrology: JASN, 2001, 12, 1391-1400.	6.1	40
74	Effect of Angiotensin II Blockade on Renal Injury in Mineralocorticoid-Salt Hypertension. Hypertension, 2000, 36, 569-574.	2.7	14
7 5	Contribution of Angiotensin II to Late Renal Injury after Acute Ischemia. Journal of the American Society of Nephrology: JASN, 2000, 11, 1278-1286.	6.1	46
76	Late Consequences of Acute Ischemic Injury to a Solitary Kidney. Journal of the American Society of Nephrology: JASN, 1999, 10, 366-373.	6.1	117
77	Contribution of tubular injury to loss of remnant kidney function. Kidney International, 1998, 54, 1157-1165.	5.2	70
78	Dietary Protein Intake and the Progressive Nature of Kidney Disease:. New England Journal of Medicine, 1982, 307, 652-659.	27.0	1,863