

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2253396/publications.pdf Version: 2024-02-01

	20817	18647
17,386	60	119
citations	h-index	g-index
221	221	10(29
331	331	10628
docs citations	times ranked	citing authors
	citations 331	17,386 60 citations h-index 331 331

ΜΟΙΛΝ

#	Article	IF	CITATIONS
1	Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 132-168.	12.3	23
2	Robust bulk micro-nano hierarchical copper structures possessing exceptional bactericidal efficacy. Biomaterials, 2022, 280, 121271.	11.4	15
3	Microstructure modification of additive manufactured Ti-6Al-4V plates for improved ballistic performance properties. Journal of Materials Processing Technology, 2022, 301, 117436.	6.3	19
4	Variant selection in additively manufactured alpha-beta titanium alloys. Journal of Materials Science and Technology, 2022, 113, 14-21.	10.7	29
5	Geometrical parameters and mechanical properties of Ti6Al4V hollow-walled lattices. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142667.	5.6	16
6	Identification of unusual large zones of Category I triple-alpha-variant clusters in additively manufactured Ti-4Al-2V alloy. Scripta Materialia, 2022, 212, 114578.	5.2	2
7	A Digital-Twin Methodology for the Non-destructive Certification of Lattice Structures. Jom, 2022, 74, 1784-1797.	1.9	6
8	Alloy solidification: Assessment and improvement of an easy-to-apply model. Journal of Materials Science and Technology, 2022, 130, 1-11.	10.7	6
9	Fatigue behaviour of laser powder bed fusion (L-PBF) Ti–6Al–4V, Al–Si–Mg and stainless steels: a brief overview. International Journal of Fracture, 2022, 235, 3-46.	2.2	9
10	Perspectives on additive manufacturing for dynamic impact applications. Materials and Design, 2022, 221, 110963.	7.0	14
11	Additive manufacturing of Ti-6Al-4V horizontal hollow struts with submillimetre wall thickness by laser powder bed fusion. Thin-Walled Structures, 2022, 179, 109620.	5.3	7
12	Additive manufacturing of intricate lattice materials: Ensuring robust strut additive continuity to realize the design potential. Additive Manufacturing, 2022, 58, 103022.	3.0	2
13	Dissolution Kinetics of Iron-Based Intermetallic Compounds (τ5c IMCs) in a Commercial Steel Strip Metallic Alloy Coating Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 41-50.	2.1	2
14	Grain refinement of stainless steel in ultrasound-assisted additive manufacturing. Additive Manufacturing, 2021, 37, 101632.	3.0	29
15	Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Materialia, 2021, 202, 211-221.	7.9	85
16	3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling. Thin-Walled Structures, 2021, 161, 107471.	5.3	63
17	Development of core–shell-structured Ti-(N) powders for additive manufacturing and comparison of tensile properties of the additively manufactured and spark-plasma-sintered Ti-N alloys. Advanced Powder Technology, 2021, 32, 2379-2389.	4.1	4
18	Thermodynamic and Kinetic Analyses of the Removal of Impurity Titanium and Vanadium from Molten Aluminum for Electrical Conductor Applications. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3130-3141.	2.1	6

#	Article	IF	CITATIONS
19	Near room-temperature formation of Cu3Sn: In-situ synchrotron X-ray diffraction characterization and thermodynamic assessments of its nucleation. Acta Materialia, 2021, 213, 116894.	7.9	4
20	Microstructure, tensile properties and deformation behaviour of a promising bio-applicable new Ti35Zr15Nb25Ta25 medium entropy alloy (MEA). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141805.	5.6	16
21	Improved ballistic performance of additively manufactured Ti6Al4V with α-β lamellar microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141888.	5.6	10
22	Coupling effects of high magnetic field and annealing on the microstructure evolution and mechanical properties of additive manufactured Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141815.	5.6	18
23	Hollow-walled lattice materials by additive manufacturing: Design, manufacture, properties, applications and challenges. Current Opinion in Solid State and Materials Science, 2021, 25, 100940.	11.5	31
24	Buckling phenomena in AM lattice strut elements: A design tool applied to Ti-6Al-4V LB-PBF. Materials and Design, 2021, 208, 109892.	7.0	14
25	Simulation-informed laser metal powder deposition of Ti-6Al-4V with ultrafine α-β lamellar structures for desired tensile properties. Additive Manufacturing, 2021, 46, 102139.	3.0	16
26	Improving the accuracy and reliability of temperature field simulation during laser metal deposition. Australian Journal of Mechanical Engineering, 2021, 19, 630-641.	2.1	1
27	Manufacturability of Ti-6Al-4V Hollow-Walled Lattice Struts by Laser Powder Bed Fusion. Jom, 2021, 73, 4199-4208.	1.9	10
28	The Effect of PostProcessing on the Ductility and Strength of Ti-6Al-4V Lattice Materials. Jom, 2021, 73, 4119-4129.	1.9	4
29	Architectured hierarchical porous metals enabled by additive manufacturing. Australian Journal of Mechanical Engineering, 2021, 19, 669-679.	2.1	3
30	Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate. International Journal of Fatigue, 2020, 130, 105236.	5.7	47
31	Fabrication of the τ5c Intermetallic Compound Monoliths by a Novel Powder Metallurgy and Hot-Dipping Approach. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 836-849.	2.1	5
32	Grain structure control during metal 3D printing by high-intensity ultrasound. Nature Communications, 2020, 11, 142.	12.8	416
33	In situ hydrothermal transformation of titanium surface into lithium-doped continuous nanowire network towards augmented bioactivity. Applied Surface Science, 2020, 505, 144604.	6.1	18
34	Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Composites Part B: Engineering, 2020, 183, 107691.	12.0	93
35	Characteristics of oxide films on Ti-(10–75)Ta alloys and their corrosion performance in an aerated Hank's balanced salt solution. Applied Surface Science, 2020, 506, 145013.	6.1	30
36	Tensile properties improvement by homogenized nitrogen solid solution strengthening of commercially pure titanium through powder metallurgy process. Materials Characterization, 2020, 170, 110700.	4.4	22

#	Article	IF	CITATIONS
37	Non-destructive simulation of node defects in additively manufactured lattice structures. Additive Manufacturing, 2020, 36, 101593.	3.0	20
38	Graphene-strengthened Inconel 625 Alloy Fabricated by Selective Laser Melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140099.	5.6	21
39	Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140169.	5.6	32
40	Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139930.	5.6	42
41	Ultra-High-Speed Laser Cladding of Stellite® 6 Alloy on Mild Steel. Jom, 2020, 72, 4632-4638.	1.9	12
42	Surface Engineering: Applications for Advanced Manufacturing. Jom, 2020, 72, 4574-4575.	1.9	1
43	Adoption and Diffusion of Disruptive Technologies: The Case of Additive Manufacturing in Medical Technology Industry in Australia. Procedia Manufacturing, 2020, 43, 18-24.	1.9	8
44	Sintering of titanium in argon and vacuum: Pore evolution and mechanical properties. International Journal of Refractory Metals and Hard Materials, 2020, 90, 105226.	3.8	18
45	Liquid metal dealloying of titanium-tantalum (Ti-Ta) alloy to fabricate ultrafine Ta ligament structures: A comparative study in molten copper (Cu) and Cu-based alloys. Corrosion Science, 2020, 169, 108600.	6.6	14
46	Grain Refinement of Alloys in Fusion-Based Additive Manufacturing Processes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4341-4359.	2.2	115
47	Strength-ductility improvement of extruded Ti-(N) materials using pure Ti powder with high nitrogen solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 779, 139136.	5.6	29
48	Fatigue Performance of Additively Manufactured Ti-6Al-4V: Surface Condition vs. Internal Defects. Jom, 2020, 72, 1022-1030.	1.9	22
49	Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technology, 2020, 364, 189-204.	4.2	55
50	Microstructural modification of recycled aluminium alloys by high-intensity ultrasonication: Observations from custom Al–2Si–2Mg–1.2Fe–(0.5,1.0)Mn alloys. Journal of Alloys and Compounds, 2020, 823, 153833.	5.5	22
51	A Monte Carlo simulation-based approach to realistic modelling of additively manufactured lattice structures. Additive Manufacturing, 2020, 32, 101092.	3.0	32
52	Additive Manufacturing—The 2nd Asia–Pacific International Conference on Additive Manufacturing (APICAM 2019). Jom, 2020, 72, 997-998.	1.9	1
53	Adaptive Concurrent Topology Optimization of Cellular Composites for Additive Manufacturing. Jom, 2020, 72, 2378-2390.	1.9	26
54	Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. International Journal of Advanced Manufacturing Technology, 2020, 108, 957-971.	3.0	41

#	Article	IF	CITATIONS
55	Microstructure and isothermal oxidation behavior of Nb-Ti-Si-based alloy additively manufactured by powder-feeding laser directed energy deposition. Corrosion Science, 2020, 173, 108757.	6.6	14
56	High oxygen-content titanium and titanium alloys made from powder. Journal of Alloys and Compounds, 2020, 836, 155526.	5.5	33
57	SLM lattice structures: Properties, performance, applications and challenges. Materials and Design, 2019, 183, 108137.	7.0	689
58	Atomic Structural Competition in the Al85.5Ni9.5La5 Alloy During Liquid-to-Solid Transition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3441-3445.	2.2	4
59	Titanium-Doped Copper-Diamond Composites Fabricated by Hot-Forging of Powder Mixtures or Cold-Pressed Powder Preforms. Jom, 2019, 71, 4867-4871.	1.9	7
60	Effect of polygon order on additively manufactured lattice structures: a method for defining the threshold resolution for lattice geometry. International Journal of Advanced Manufacturing Technology, 2019, 105, 2501-2511.	3.0	13
61	Additively manufactured titanium artworks. , 2019, , 173-184.		1
62	Experimental and numerical assessment of surface roughness for Ti6Al4V lattice elements in selective laser melting. International Journal of Advanced Manufacturing Technology, 2019, 105, 1275-1293.	3.0	34
63	Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Materials and Design, 2019, 184, 108165.	7.0	134
64	The Role of Ultrasonically Induced Acoustic Streaming in Developing Fine Equiaxed Grains During the Solidification of an Al-2ÂPct Cu Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5253-5263.	2.2	14
65	New insights into nickel-free superelastic titanium alloys for biomedical applications. Current Opinion in Solid State and Materials Science, 2019, 23, 100783.	11.5	36
66	<i>In situ</i> doping and synthesis of two-dimensional nanomaterials using mechano-chemistry. Nanoscale Horizons, 2019, 4, 642-646.	8.0	10
67	3D characterization of defects in deep-powder-bed manufactured Ti–6Al–4V and their influence on tensile properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138031.	5.6	40
68	Spark Plasma Sintering of Ti-48Al-2Cr-2Nb Alloy Powder and Characterization of an Unexpected Phase. Jom, 2019, 71, 2556-2563.	1.9	3
69	Intensified texture in selective electron beam melted Ti-6Al-4V thin plates by hot isostatic pressing and its fundamental influence on tensile fracture and properties. Materials Characterization, 2019, 152, 162-168.	4.4	19
70	Osteoblast Responses to Titanium-Coated Subcellular Scaled Microgrooves. ACS Applied Bio Materials, 2019, 2, 2405-2413.	4.6	13
71	Recent Advances in the Design and Fabrication of Strong and Ductile (Tensile) Titanium Metal Matrix Composites. Advanced Engineering Materials, 2019, 21, 1801331.	3.5	24
72	Effect of ultrasonic melt treatment on intermetallic phase formation in a manganese-modified Al-17Si-2Fe alloy. Journal of Materials Processing Technology, 2019, 271, 346-356.	6.3	20

#	Article	IF	CITATIONS
73	Computational modelling of strut defects in SLM manufactured lattice structures. Materials and Design, 2019, 171, 107671.	7.0	163
74	In-situ and ex-situ synchrotron X-ray diffraction studies of microstructural length scale controlled dealloying. Acta Materialia, 2019, 168, 376-392.	7.9	13
75	Effect of Ultrasonication on the Solidification Microstructure in Al and Mg-Alloys. Minerals, Metals and Materials Series, 2019, , 1589-1595.	0.4	1
76	Selective laser melting-fabricated Ti-6Al-4V alloy: Microstructural inhomogeneity, consequent variations in elastic modulus and implications. Optics and Laser Technology, 2019, 111, 664-670.	4.6	30
77	Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 762-772.	5.6	55
78	Strong and Ductile Ti-6Al-4V Alloy Produced by Hot Pressing of Ti-6Al-4V Swarf. Jom, 2019, 71, 1056-1061.	1.9	6
79	Impacts of Defocusing Amount and Molten Pool Boundaries on Mechanical Properties and Microstructure of Selective Laser Melted AlSi10Mg. Materials, 2019, 12, 73.	2.9	18
80	Selective Electron Beam Manufacturing of Ti-6Al-4V Strips: Effect of Build Orientation, Columnar Grain Orientation, and Hot Isostatic Pressing on Tensile Properties. Jom, 2018, 70, 638-643.	1.9	12
81	A comparative study of the effect of submicron porous and smooth ultrafineâ€grained Tiâ€20Mo surfaces on osteoblast responses. Journal of Biomedical Materials Research - Part A, 2018, 106, 2020-2033.	4.0	12
82	The enabling role of dealloying in the creation of specific hierarchical porous metal structures—A review. Corrosion Science, 2018, 134, 78-98.	6.6	97
83	Metal Alloys for Fusionâ€Based Additive Manufacturing. Advanced Engineering Materials, 2018, 20, 1700952.	3.5	126
84	Metal injection moulding of non-spherical titanium powders: Processing, microstructure and mechanical properties. Journal of Manufacturing Processes, 2018, 31, 416-423.	5.9	34
85	The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomaterials Science, 2018, 6, 250-264.	5.4	86
86	The β phase evolution in Ti-6Al-4V additively manufactured by laser metal deposition due to cyclic phase transformations. Materials Letters, 2018, 216, 50-53.	2.6	15
87	Microwave processing of titanium and titanium alloys for structural, biomedical and shape memory applications: Current status and challenges. Materials and Manufacturing Processes, 2018, 33, 35-49.	4.7	18
88	Microstructural development of electron beam processed Al-3Ti-1Sc alloy under different electron beam scanning speeds. Materials Characterization, 2018, 143, 43-49.	4.4	14
89	In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites. Journal of Alloys and Compounds, 2018, 735, 2640-2645.	5.5	50
90	Solidification of Aluminium Alloys Under Ultrasonication: An Overview. Transactions of the Indian Institute of Metals, 2018, 71, 2681-2686.	1.5	9

#	Article	IF	CITATIONS
91	Porous Titanium Scaffolds Fabricated by Metal Injection Moulding for Biomedical Applications. Materials, 2018, 11, 1573.	2.9	16
92	Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti-12Mo alloy for dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 534-547.	3.1	63
93	Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges. Current Opinion in Solid State and Materials Science, 2018, 22, 75-99.	11.5	165
94	Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 76-85.	5.6	38
95	Zirconium Alloys for Orthopaedic and Dental Applications. Advanced Engineering Materials, 2018, 20, 1800207.	3.5	71
96	Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Materials and Design, 2018, 157, 179-199.	7.0	285
97	Redefining the β-Phase Stability in Ti-Nb-Zr Alloys for Alloy Design and Microstructural Prediction. Jom, 2018, 70, 2254-2259.	1.9	23
98	Toward Manufacturing Quality Ti-6Al-4V Lattice Struts by Selective Electron Beam Melting (SEBM) for Lattice Design. Jom, 2018, 70, 1870-1876.	1.9	26
99	Atomic Distance Tuning Effect for Nucleation in Liquid Iron. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4419-4423.	2.2	5
100	A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA). Intermetallics, 2018, 101, 39-43.	3.9	86
101	Fabrication and anisotropic wettability of titanium-coated microgrooves. Journal of Applied Physics, 2018, 123, .	2.5	18
102	Powder Metallurgy of Non-Ferrous Metals: Part I. Jom, 2018, 70, 614-615.	1.9	0
103	Ductility Improvement Mechanism of Pure Titanium with Excessive Oxygen Solid Solution via Rapid Cooling Process. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 390-395.	0.4	9
104	Ni-free superelastic titanium alloys for medical and dental applications. , 2018, , 591-611.		1
105	Enabling the development of ductile powder metallurgy titanium alloys by a unique scavenger of oxygen and chlorine. Journal of Alloys and Compounds, 2018, 764, 467-475.	5.5	22
106	Titanium background, alloying behavior and advanced fabrication techniques—An overview. , 2018, , 23-37.		3
107	Fundamental Understanding of the Dissolution of Oxide Film on Ti Powder and the Unique Scavenging Feature by LaB6. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1-6.	2.2	22
108	Microstructure, Mechanical Properties, and Flatness of SEBM Ti-6Al-4V Sheet in As-Built and Hot Isostatically Pressed Conditions. Jom, 2017, 69, 466-471.	1.9	27

#	Article	IF	CITATIONS
109	Influence of the laser pre-quenched substrate on an electroplated chromium coating/steel substrate. Applied Surface Science, 2017, 405, 273-279.	6.1	15
110	Characterization and decompositional crystallography of the massive phase grains in an additively-manufactured Ti-6Al-4V alloy. Materials Characterization, 2017, 127, 146-152.	4.4	26
111	Effect of Dy addition on microstructure and mechanical properties of Mg-4Y-3Nd-0.4Zr alloy. Transactions of Nonferrous Metals Society of China, 2017, 27, 797-803.	4.2	11
112	Initial crystallisation or nucleation in a liquid aluminium alloy containing spinel seeds. Materials Letters, 2017, 196, 358-360.	2.6	6
113	In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Materialia, 2017, 125, 390-400.	7.9	450
114	Additive Manufacturing of Titanium Alloys. Jom, 2017, 69, 2677-2678.	1.9	11
115	The Effect of Ultrasonic Melt Treatment on Macro-Segregation and Peritectic Transformation in an Al-19Si-4Fe Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5579-5590.	2.2	31
116	New Development in Selective Laser Melting of Ti–6Al–4V: A Wider Processing Window for the Achievement of Fully Lamellar αÂ+Âβ Microstructures. Jom, 2017, 69, 2679-2683.	1.9	38
117	Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. Journal of Materials Research, 2017, 32, 3744-3752.	2.6	24
118	Reducing electric current and energy consumption of spark plasma sintering via punch configuration design. Ceramics International, 2017, 43, 17225-17228.	4.8	4
119	Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium. Scientific Reports, 2017, 7, 9729.	3.3	46
120	Selective laser melting of H13: microstructure and residual stress. Journal of Materials Science, 2017, 52, 12476-12485.	3.7	127
121	Layer Additive Production or Manufacturing of Thick Sections of Ti-6Al-4V by Selective Electron Beam Melting (SEBM). Jom, 2017, 69, 1836-1843.	1.9	16
122	High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scripta Materialia, 2017, 141, 133-137.	5.2	120
123	Grain refinement of binary Al-Si, Al-Cu and Al-Ni alloys by ultrasonication. Journal of Materials Processing Technology, 2017, 249, 367-378.	6.3	47
124	On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification. Materials and Design, 2017, 132, 266-274.	7.0	54
125	Enhanced Homogenization of Vanadium in Spark Plasma Sintering of Ti-10V-2Fe-3Al Alloy from Titanium and V-Fe-Al Master Alloy Powder Blends. Jom, 2017, 69, 663-668.	1.9	3
126	Sintering and Related Phenomena. Jom, 2017, 69, 628-629.	1.9	2

#	Article	IF	CITATIONS
127	Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technology, 2017, 319, 289-301.	4.2	115
128	High-tensile-strength and ductile novel Ti-Fe-N-B alloys reinforced with TiB nanowires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 285-290.	5.6	13
129	Optical Aptasensors for Adenosine Triphosphate. Theranostics, 2016, 6, 1683-1702.	10.0	43
130	Enzyme Mimics: Advances and Applications. Chemistry - A European Journal, 2016, 22, 8404-8430.	3.3	253
131	Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bulletin, 2016, 41, 775-784.	3.5	197
132	Novel synthesis and consolidation of powder materials. Powder Metallurgy, 2016, 59, 169-169.	1.7	0
133	Advances in Sintering. Jom, 2016, 68, 876-877.	1.9	1
134	Synthetic genetic polymers: advances and applications. Polymer Chemistry, 2016, 7, 5199-5216.	3.9	18
135	Variation in pore distribution along sample length in sintered 7xxx aluminum alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 2019-2028.	4.2	2
136	Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment. IOP Conference Series: Materials Science and Engineering, 2016, 117, 012050.	0.6	13
137	Electrochemical nucleic acid biosensors: from fabrication to application. Analytical Methods, 2016, 8, 5169-5189.	2.7	16
138	Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering. Jom, 2016, 68, 890-898.	1.9	7
139	The crystallographic features of τ3 phase in a powder metallurgy nickel-doped Ti–45Al–5Nb–0.2C–0.2B–1.25Ni alloy. Intermetallics, 2016, 71, 65-72.	3.9	4
140	Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99, 384-397.	10.3	77
141	The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting. Jom, 2016, 68, 791-798.	1.9	99
142	A Honeycomb-Structured Ti-6Al-4V Oil–Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications. Jom, 2016, 68, 799-805.	1.9	16
143	Selective laser melting (SLM) of AlSi12Mg lattice structures. Materials and Design, 2016, 98, 344-357.	7.0	355
144	Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83, 127-141.	11.4	1,492

#	Article	IF	CITATIONS
145	Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting. Acta Materialia, 2016, 104, 303-311.	7.9	155
146	Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits. Mechanical Systems and Signal Processing, 2016, 72-73, 906-924.	8.0	32
147	Recent advances in grain refinement of light metals and alloys. Current Opinion in Solid State and Materials Science, 2016, 20, 13-24.	11.5	222
148	Electrochemical Dealloying of a Ternary Al67Cu18Sn15 Alloy Compared with that of a Binary Al75Cu25 Alloy. ECS Transactions, 2015, 66, 23-30.	0.5	0
149	CFD modelling of nitrogen gas flow pattern during sintering of Al–7Zn–2.5Mg–1Cu alloy and its effect on distortion. Powder Metallurgy, 2015, 58, 112-122.	1.7	2
150	Quantitative Analyses of MWCNTâ€ī Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution. Advanced Engineering Materials, 2015, 17, 1660-1669.	3.5	78
151	The Contribution of Constitutional Supercooling to Nucleation and Grain Formation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4868-4885.	2.2	123
152	Concurrence of de-alloying and re-alloying in a ternary Al ₆₇ Cu ₁₈ Sn ₁₅ alloy and the fabrication of 3D nanoporous Cu–Sn composite structures. RSC Advances, 2015, 5, 9574-9580.	3.6	7
153	Microstructure and Mechanical Properties of Long Ti-6Al-4V Rods Additively Manufactured by Selective Electron Beam Melting Out of a Deep Powder Bed and the Effect of Subsequent Hot Isostatic Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3824-3834.	2.2	99
154	In Situ Synchrotron Radiation Study of TiH2-6Al-4V and Ti-6Al-4V: Accelerated Alloying and Phase Transformation, and Formation of an Oxygen-Enriched Ti4Fe2O Phase in TiH2-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 41-45.	2.2	12
155	Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties. Jom, 2015, 67, 668-673.	1.9	168
156	Porous titanium structures and applications. , 2015, , 533-554.		12
157	Spark plasma sintering and hot pressing of titanium and titanium alloys. , 2015, , 219-235.		24
158	Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications. Jom, 2015, 67, 564-572.	1.9	62
159	Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting. Jom, 2015, 67, 555-563.	1.9	338
160	Metal Powder for Additive Manufacturing. Jom, 2015, 67, 536-537.	1.9	46
161	A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting. Journal of Central South University, 2015, 22, 2857-2863.	3.0	11
162	Creation of bimodal porous copper materials by an annealing-electrochemical dealloying approach. Electrochimica Acta, 2015, 164, 288-296.	5.2	49

#	Article	IF	CITATIONS
163	Microwave sintering of titanium and titanium alloys. , 2015, , 237-251.		5
164	A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications. Journal of Porous Materials, 2015, 22, 713-719.	2.6	15
165	Pressureless sintering of titanium and titanium alloys: sintering densification and solute homogenization. , 2015, , 201-218.		12
166	Scavenging of oxygen and chlorine from powder metallurgy (PM) titanium and titanium alloys. , 2015, , 253-276.		13
167	Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 103-107.	5.6	123
168	A perspective on the future ofÂtitanium powder metallurgy. , 2015, , 601-608.		8
169	Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Materials and Design, 2015, 88, 138-148.	7.0	73
170	Trace Carbon in Biomedical Beta-Titanium Alloys: Recent Progress. Jom, 2015, 67, 2236-2243.	1.9	23
171	Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Materialia, 2015, 85, 74-84.	7.9	897
172	Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metallurgy, 2014, 57, 251-257.	1.7	197
173	Significant α-phase growth confinement in Grade 4 titanium and substantial β-phase refinement in Grade 7 titanium. MRS Communications, 2014, 4, 183-188.	1.8	4
174	Chemical heterogeneity-induced plasticity in Ti–Fe–Bi ultrafine eutectic alloys. Materials & Design, 2014, 60, 363-367.	5.1	23
175	Distortion in a 7xxx Aluminum Alloy during Liquid Phase Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1010-1018.	2.2	6
176	A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility. Acta Materialia, 2014, 68, 196-206.	7.9	129
177	Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5Zr alloy in the product form of a large structural casting. Materials & Design, 2014, 60, 218-225.	5.1	39
178	Thermal and mechanical properties of Cu60â^'xZr25Ti15Nix bulk metallic glasses with x=0, 1, 3, 5, 7, 9 and 11 at.%. Metals and Materials International, 2014, 20, 1-5.	3.4	17
179	Warm die compaction and sintering of titanium and titanium alloy powders. Journal of Materials Processing Technology, 2014, 214, 660-666.	6.3	24
180	The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al–2Cu alloy. Journal of Crystal Growth, 2014, 408, 119-124.	1.5	108

#	Article	IF	CITATIONS
181	Titanium carbide precipitation in Ti–22Nb alloy fabricated by metal injection moulding. Powder Metallurgy, 2014, 57, 2-4.	1.7	23
182	The effect of lanthanum boride on the sintering, sintered microstructure and mechanical properties of titanium and titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 447-455.	5.6	46
183	Combinatorial Influence of Bimodal Size of B2 TiCu Compounds on Plasticity of Ti-Cu-Ni-Zr-Sn-Si Bulk Metallic Glass Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2376-2381.	2.2	27
184	Impacts of trace carbon on the microstructure of as-sintered biomedical Ti–15Mo alloy and reassessment of the maximum carbon limit. Acta Biomaterialia, 2014, 10, 1014-1023.	8.3	53
185	Formation of anomalously large Al single crystals at triple points during pulsed electric current sintering (PECS) of Al86Ni6Y4.5Co2La1.5 metallic glass. Materials Letters, 2014, 132, 196-199.	2.6	6
186	Novel Ultrafine-Grained Aluminium Metal Matrix Composites Prepared from Fine Atomized Al Powders. , 2014, , 1425-1430.		1
187	Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 171-182.	3.1	118
188	Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2935-2949.	2.2	201
189	Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1842-1851.	2.2	30
190	Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scripta Materialia, 2013, 69, 29-32.	5.2	56
191	The effect of a small addition of boron on the sintering densification, microstructure and mechanical properties of powder metallurgy Ti–7Ni alloy. Journal of Alloys and Compounds, 2013, 555, 339-346.	5.5	30
192	Impurity scavenging, microstructural refinement and mechanical properties of powder metallurgy titanium and titanium alloys by a small addition of cerium silicide. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 573, 166-174.	5.6	40
193	Fabrication of 10mm diameter fully dense Al86Ni6Y4.5Co2La1.5 bulk metallic glass with high fracturestrength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 568, 155-159.	5.6	48
194	SAP-like ultrafine-grained Al composites dispersion strengthened with nanometric AlN. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 181-187.	5.6	34
195	Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 574, 176-185.	5.6	30
196	The effect of a small addition of nickel on the sintering, sintered microstructure, and mechanical properties of Ti–45Al–5Nb–0.2C–0.2B alloy. Journal of Alloys and Compounds, 2013, 578, 195-201.	5.5	19
197	Abnormal crystallization in Al86Ni6Y4.5Co2La1.5 metallic glass induced by spark plasma sintering. Intermetallics, 2013, 39, 69-73.	3.9	25
198	Novel fabrication of titanium by pure microwave radiation of titanium hydride powder. Scripta Materialia, 2013, 69, 69-72.	5.2	29

#	Article	IF	CITATIONS
199	Impurity (Fe, Cl, and P)-Induced Grain Boundary and Secondary Phases in Commercially Pure Titanium (CP-Ti). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3961-3969.	2.2	27
200	Nanoscaled Al–AlN composites consolidated by equal channel angular pressing (ECAP) of partially in situ nitrided Al powder. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 190-195.	5.6	46
201	The critical role of heating rate in enabling the removal of surface oxide films during spark plasma sintering of Al-based bulk metallic glass powder. Journal of Non-Crystalline Solids, 2013, 375, 95-98.	3.1	30
202	The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 293-300.	5.6	41
203	The effect of grain size on the tensile and creep properties of Mg–2.6Nd–0.35Zn–xZr alloys at 250°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 163-169.	5.6	29
204	In situ synchrotron radiation to understand the pathways for the scavenging of oxygen in commercially pure Ti and Ti–6Al–4V by yttrium hydride. Scripta Materialia, 2013, 68, 63-66.	5.2	52
205	Modification of the α-Ti laths to near equiaxed α-Ti grains in as-sintered titanium and titanium alloys by a small addition of boron. Journal of Alloys and Compounds, 2013, 579, 553-557.	5.5	40
206	Applied Pressure on Altering the Nano-Crystallization Behavior of Al ₈₆ Ni ₆ Y _{4.5} Co ₂ La _{1.5} Metallic Glass Powder during Spark Plasma Sintering and Its Effect on Powder Consolidation. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	13
207	Calibration of Temperature Measurement by Infrared Pyrometry in MicrowaveHeating of Powder Materials: an Exothermic Reaction Based Approach. Journal of Microwave Power and Electromagnetic Energy, 2013, 47, 5-11.	0.8	7
208	A Brief History of the Development of Grain Refinement Technology for Cast Magnesium Alloys. , 2013, , 3-8.		2
209	Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6Eutectic Alloy. Korean Journal of Materials Research, 2013, 23, 227-232.	0.2	0
210	Enhanced Sintering of Pre-Alloyed Binary TiAl Powder by a Small Addition of Iron. Key Engineering Materials, 2012, 520, 89-94.	0.4	4
211	Devising MIMO arrays for underwater 3-D short-range imaging. , 2012, , .		6
212	'Reasonable Period of Time' in the WTO Dispute Settlement System. Journal of International Economic Law, 2012, 15, 257-285.	1.1	8
213	Micrometer-sized quasicrystals in the Al ₈₅ Ni ₅ Y ₆ Co ₂ Fe ₂ metallic glass: A TEM study and a brief discussion on the formability of quasicrystals in bulk and marginal glass-forming alloys. Journal of Materials Research. 2012. 27. 2131-2139.	2.6	9
214	The effect of the gas atmosphere on the response of the Al86Ni6Y4.5Co2La1.5 metallic glass powder to heating. Intermetallics, 2012, 30, 117-121.	3.9	4
215	Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti–2.25Mo–1.5Fe alloy. Scripta Materialia, 2012, 67, 491-494.	5.2	56
216	Microwave-assisted fabrication of titanium hollow spheres with tailored shell structures for various potential applications. Materials Letters, 2012, 86, 84-87.	2.6	20

#	Article	IF	CITATIONS
217	Non-isothermal crystallization kinetics and mechanical properties of Al 86 Ni 6 Y 4.5 Co 2 La 1.5 metallic glass powder. Journal of Alloys and Compounds, 2012, 530, 127-131.	5.5	21
218	The characteristics of heterogeneous nucleation on concave surfaces and implications for directed nucleation or surface activity by surface nanopatterning. Journal of Crystal Growth, 2012, 355, 73-77.	1.5	50
219	Metal injection moulding of in-situ formed AlN hollow sphere reinforced Al matrix syntactic foam parts. Materials Chemistry and Physics, 2012, 137, 435-438.	4.0	15
220	Sintering of Titanium with Yttrium Oxide Additions for the Scavenging of Chlorine Impurities. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5271-5278.	2.2	13
221	The Sintering, Sintered Microstructure and Mechanical Properties of Ti-Fe-Si Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4896-4906.	2.2	25
222	The Effects of Sample Position and Gas Flow Pattern on the Sintering of a 7xxx Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4345-4355.	2.2	4
223	A Correlation Between Failure Angle and Constituent for Al-AlN Composites Under Uniaxial Tensile Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3293-3299.	2.2	0
224	TEM and XRD characterisation of commercially pure α-Ti made by powder metallurgy and casting. Materials Letters, 2012, 72, 64-67.	2.6	19
225	Aluminium powder metallurgy. , 2011, , 655-701.		30
226	Grain Refinement in Alloys: Novel Approaches. , 2011, , 1-7.		5
227	Crystallization behaviour and thermal stability of two aluminium-based metallic glass powder materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 432-439.	5.6	24
228	In situ TEM observations of unusual nanocrystallization in a Ti-based bulk metallic glass. Scripta Materialia, 2011, 64, 701-704.	5.2	3
229	The influence of topological structure on bulk glass formation in Al-based metallic glasses. Scripta Materialia, 2011, 65, 755-758.	5.2	23
230	Sintering of Titanium in Vacuum by Microwave Radiation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2466-2474.	2.2	42
231	Fabrication of Porous Aluminum with Controllable Open-Pore Fraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2040-2047.	2.2	7
232	The Interdependence Theory: The relationship between grain formation and nucleant selection. Acta Materialia, 2011, 59, 4907-4921.	7.9	494
233	Sintering of Ti–10V–2Fe–3Al and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6719-6726.	5.6	52
234	The effect of Si additions on the sintering and sintered microstructure and mechanical properties of Ti–3Ni alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7381-7387.	5.6	41

#	Article	IF	CITATIONS
235	Solidification of nitrogen-atomized Al ₈₆ Ni ₆ Y _{4.5} Co ₂ La _{1.5} metallic glass. Journal of Materials Research, 2011, 26, 944-950.	2.6	15
236	In situ fabrication and mechanical properties of Al–AlN composite by hot extrusion of partially nitrided AA6061 powder. Journal of Materials Research, 2011, 26, 1719-1725.	2.6	32
237	Formation of aluminium nitride during sintering of powder injection moulded aluminium. Powder Metallurgy, 2010, 53, 118-124.	1.7	7
238	On the infiltration mode during fabrication of aluminium composite. Acta Materialia, 2010, 58, 3790-3797.	7.9	15
239	Secondary phases and interfaces in a nitrogen-atmosphere sintered Al alloy: Transmission electron microscopy evidence for the formation of AlN during liquid phase sintering. Acta Materialia, 2010, 58, 5667-5674.	7.9	14
240	Pressureless Infiltration and Resulting Mechanical Properties of Al-AlN Preforms Fabricated by Selective Laser Sintering and Partial Nitridation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2417-2424.	2.2	8
241	The surface structure of gas-atomized metallic glass powders. Scripta Materialia, 2010, 62, 266-269.	5.2	33
242	Electron beam processing of Al–2Sc alloy for enhanced precipitation hardening. Scripta Materialia, 2010, 63, 151-154.	5.2	15
243	The effect of solute on ultrasonic grain refinement of magnesium alloys. Journal of Crystal Growth, 2010, 312, 2267-2272.	1.5	83
244	An analytical model for constitutional supercooling-driven grain formation and grain size prediction. Acta Materialia, 2010, 58, 3262-3270.	7.9	180
245	Microstructural Characteristics of Electron Beam Processed Al-2Sc. Materials Science Forum, 2010, 654-656, 910-913.	0.3	0
246	Microstructural Assessment of the Oxidation Behavior of Cu-Based Metallic Glass Powder. Materials Science Forum, 2010, 654-656, 1054-1057.	0.3	2
247	Sintering of titanium and its alloys. , 2010, , 324-355.		17
248	Sintering of aluminium and its alloys. , 2010, , 291-323.		13
249	Heterogeneous Nucleation and Grain Formation on Spherical and Flat Substrates. Materials Science Forum, 2010, 654-656, 1339-1342.	0.3	1
250	Microwave Sintering of Titanium. Key Engineering Materials, 2010, 436, 141-147.	0.4	14
251	Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived. Journal of Chemical Physics, 2009, 130, 214709.	3.0	62
252	Grain nucleation and formation in Mg–Zr alloys. International Journal of Cast Metals Research, 2009, 22, 256-259.	1.0	40

#	Article	IF	CITATIONS
253	High-intensity ultrasonic grain refinement of magnesium alloys: role of solute. International Journal of Cast Metals Research, 2009, 22, 260-263.	1.0	18
254	Formation of Aluminium Nitride during Sintering of Powder Injection Moulded Aluminium. Materials Science Forum, 2009, 618-619, 631-634.	0.3	1
255	Rapid Prototyping of Aluminium Alloy Parts: The Effect of Infiltration Atmosphere. Materials Science Forum, 2009, 618-619, 635-640.	0.3	0
256	The Loss of Dissolved Zirconium in Zirconium-Refined Magnesium Alloys after Remelting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2470-2479.	2.2	51
257	Ultrasonic refinement of magnesium by cavitation: Clarifying the role of wall crystals. Journal of Crystal Growth, 2009, 311, 3708-3715.	1.5	126
258	An approach to assessing ultrasonic attenuation in molten magnesium alloys. Journal of Applied Physics, 2009, 105, .	2.5	45
259	Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys. Scripta Materialia, 2008, 59, 19-22.	5.2	215
260	Controlling the Semisolid Grain Size during Solidification. Solid State Phenomena, 2008, 141-143, 355-360.	0.3	11
261	New approach to analysis of grain refinement. International Journal of Cast Metals Research, 2007, 20, 131-135.	1.0	18
262	Coupled mesoscopic constitutive modelling and finite element simulation for plastic flow and microstructure of two-phase alloys. Computational Materials Science, 2007, 40, 201-212.	3.0	4
263	A New Analytical Approach to Reveal the Mechanisms of Grain Refinement. Advanced Engineering Materials, 2007, 9, 739-746.	3.5	63
264	Heterogeneous nucleation on potent spherical substrates during solidification. Acta Materialia, 2007, 55, 943-953.	7.9	144
265	Investigation of grain refinement during a rejuvenation heat treatment of wrought Alloy 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 456, 147-155.	5.6	6
266	Mechanism for grain refinement of magnesium alloys by superheating. Scripta Materialia, 2007, 56, 633-636.	5.2	92
267	On the solidification microstructure of Mg–30Zn–2.5Y metal–intermetallic alloy. Intermetallics, 2006, 14, 596-602.	3.9	28
268	Creation of semisolid slurries containing fine and spherical particles by grain refinement based on the Mullins–Sekerka stability criterion. Acta Materialia, 2006, 54, 2241-2252.	7.9	43
269	The creep behaviour of rheo-diecast AZ91D (Mg–9Al–1Zn) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 7-12.	5.6	15
270	Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 779-787.	2.2	33

#	Article	IF	CITATIONS
271	The effects of rheo-diecasting on the integrity and mechanical properties of Mg–6Al–1Zn. Scripta Materialia, 2006, 54, 207-211.	5.2	26
272	Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scripta Materialia, 2006, 54, 881-886.	5.2	158
273	Effect of manganese on grain refinement of Mg–Al based alloys. Scripta Materialia, 2006, 54, 1853-1858.	5.2	116
274	Phase Equilibria and Solidification of Mg-Rich Al-Mg-Si Alloys. Materials Science Forum, 2006, 508, 621-628.	0.3	4
275	Microstructure and Mechanical Properties of a Rheo-Diecast Mg–10Zn–4.5Al Alloy. Materials Transactions, 2005, 46, 2221-2228.	1.2	19
276	Crystallography of grain refinement in Mg–Al based alloys. Acta Materialia, 2005, 53, 3261-3270.	7.9	222
277	Discussions on grain refinement of magnesium alloys by carbon inoculation. Scripta Materialia, 2005, 52, 415-419.	5.2	125
278	Native grain refinement of magnesium alloys. Scripta Materialia, 2005, 53, 841-844.	5.2	116
279	Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1669-1679.	2.2	580
280	Heterogeneous nuclei size in magnesium–zirconium alloys. Scripta Materialia, 2004, 50, 1115-1119.	5.2	90
281	Effect of iron on grain refinement of high-purity Mg–Al alloys. Scripta Materialia, 2004, 51, 125-129.	5.2	93
282	Grain coarsening of magnesium alloys by beryllium. Scripta Materialia, 2004, 51, 647-651.	5.2	26
283	Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 365, 180-185.	5.6	95
284	Uptake of iron and its effect on grain refinement of pure magnesium by zirconium. Materials Science and Technology, 2004, 20, 585-592.	1.6	33
285	The effect of rejuvenation heat treatments on the repair weldability of wrought Alloy 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 340, 225-231.	5.6	34
286	The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys. Acta Materialia, 2003, 51, 3351-3361.	7.9	111
287	Effect of Soluble and Insoluble Zirconium on the Grain Refinement of Magnesium Alloys. Materials Science Forum, 2003, 419-422, 593-598.	0.3	40
288	Hafnium in peralkaline and peraluminous boro-aluminosilicate glass and glass sub-components: a solubility study. Journal of Non-Crystalline Solids, 2003, 328, 102-122.	3.1	18

#	Article	IF	CITATIONS
289	Alloying of pure magnesium with Mg 33.3 wt-%Zr master alloy. Materials Science and Technology, 2003, 19, 156-162.	1.6	47
290	Mechanism of post-weld heat treatment cracking in Rene 80 nickel based superalloy. Materials Science and Technology, 2002, 18, 407-412.	1.6	23
291	Cyclic overaging heat treatment for ductility and weldability improvement of nickel based superalloys. Materials Science and Technology, 2002, 18, 413-419.	1.6	11
292	Characteristic zirconium-rich coring structures in Mg–Zr alloys. Scripta Materialia, 2002, 46, 649-654.	5.2	129
293	The gibbs-thomson effect in dilute binary systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1283-1287.	2.2	9
294	Cyclic overaging pre-weld heat treatment of Rene 80: effect of solution treatment and end aging temperatures. Materials Science and Technology, 2002, 18, 420-428.	1.6	5
295	Settling of undissolved zirconium particles in pure magnesium melts. Journal of Light Metals, 2001, 1, 157-165.	0.8	78
296	A practical method for identifying intermetallic phase particles in aluminium alloys by electron probe microanalysis. Journal of Light Metals, 2001, 1, 187-193.	0.8	15
297	Coating molybdenum on fine Ti(C,N) powder. Journal of Materials Science Letters, 2001, 20, 647-649.	0.5	0
298	Coarsening of intermetallic or compound precipitates in binary systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 3195-3197.	2.2	4
299	On the gibbs-thomson effect in concentrated binary systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2659-2661.	2.2	5
300	Neodymium(III) in alumino-borosilicate glasses. Journal of Non-Crystalline Solids, 2000, 278, 35-57.	3.1	55
301	Microstructural evolution in the phase mixtures of Ti(C,N)–Mo at 1600°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 264, 39-46.	5.6	5
302	On the disappearance of Mo2C during low-temperature sintering of Ti(C,N)-Mo2C-Ni cermets. Journal of Materials Science, 1999, 34, 3677-3684.	3.7	17
303	Phase stability of microfine Mo2C phases in high vacuums. Journal of Materials Science Letters, 1999, 18, 1253-1254.	0.5	1
304	In-situ observations of the dissolution of carbides in an Fe-Cr-C alloy. Scripta Materialia, 1999, 41, 1301-1303.	5.2	25
305	Development of Surface-Hardened Ductile Cast Iron and its Use as a Erosion Wear-Resistant Material Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1999, 65, 1528-1533.	0.2	0
306	Fatigue Performance and Equations of Roller Compacted Concrete with Fly Ash. Cement and Concrete Research, 1998, 28, 309-315.	11.0	21

#	Article	IF	CITATIONS
307	Non-linear capillary shape evolution of rod morphologies via interfacial diffusion. Acta Materialia, 1998, 46, 1669-1681.	7.9	13
308	Re-evaluation of the experimental results reported by miyazaki et al. on the Gibbs-Thomson effect. Scripta Materialia, 1998, 39, 1451-1455.	5.2	8
309	A model for the breakup of rod morphologies. Scripta Materialia, 1997, 36, 77-82.	5.2	11
310	Impact-abrasion behavior of low alloy white cast irons. Wear, 1997, 209, 308-315.	3.1	17
311	On the fabrication of steel-wire-reinforced white cast irons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 104-109.	5.6	5
312	Surface hardening of ductile cast iron using stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 208, 88-92.	5.6	15
313	On the critical instability wavelengths of rod morphologies containing an arbitrary sinusoidal perturbation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 221, 192-194.	5.6	1
314	Modification of hypoeutectic low alloy white cast irons. Journal of Materials Science, 1996, 31, 1865-1871.	3.7	21
315	Breakup of eutectic carbide network of white cast irons at high temperatures. Journal of Materials Science, 1995, 30, 3383-3386.	3.7	19
316	Thermodynamic considerations of the instability of rod morphologies. Acta Metallurgica Et Materialia, 1994, 42, 4087-4089.	1.8	8
317	Thermodynamic considerations of the equilibrium shape of an infinitely long rod. Acta Metallurgica Et Materialia, 1994, 42, 4083-4086.	1.8	10
318	Formation of spheroidal carbide in vanadium white cast iron by rare earth modification. Materials Science and Technology, 1990, 6, 905-910.	1.6	25
319	AMC-SC1: A New Magnesium Alloy Suitable for Powertrain Applications. , 0, , .		12
320	The <i>In Situ </i> Fabrication of Al-AlN Composites from Metal Powders and their Resistance to Wear and Cavitation. Materials Science Forum, 0, 618-619, 617-620.	0.3	3
321	Electron Beam Processing of Aluminium Alloys. Materials Science Forum, 0, 618-619, 621-626.	0.3	11
322	Sintering of Titanium Powder Compacts for Containerless Hot Isostatic Pressing. Materials Science Forum, 0, 618-619, 509-512.	0.3	2
323	Introduction to the Interdependence Theory of Grain Formation and its Application to Aluminium, Magnesium and Titanium Alloys. Materials Science Forum, 0, 690, 206-209.	0.3	12
324	Design of Low Cost High Performance Powder Metallurgy Titanium Alloys: Some Basic Considerations. Key Engineering Materials, 0, 520, 24-29.	0.4	19

#	Article	IF	CITATIONS
325	A Brief History of the Grain Refinement of Cast Light Alloys. Materials Science Forum, 0, 765, 123-129.	0.3	3
326	A Detailed Experimental Assessment of Microwave Heating of Titanium Hydride Powder. Key Engineering Materials, 0, 704, 388-399.	0.4	5