List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2253393/publications.pdf Version: 2024-02-01

SUN TAE KIM

#	Article	IF	CITATIONS
1	Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus,Magnaporthe grisea. Proteomics, 2004, 4, 3569-3578.	2.2	210
2	Overexpression of <i>PYL5</i> in rice enhances drought tolerance, inhibits growth, and modulates gene expression. Journal of Experimental Botany, 2014, 65, 453-464.	4.8	204
3	Plantacyanin Plays a Role in Reproduction in Arabidopsis. Plant Physiology, 2005, 138, 778-789.	4.8	183
4	Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics, 2003, 3, 2368-2378.	2.2	166
5	Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis, 2001, 22, 2103-2109.	2.4	163
6	Mlo, a Modulator of Plant Defense and Cell Death, Is a Novel Calmodulin-binding Protein. Journal of Biological Chemistry, 2002, 277, 19304-19314.	3.4	130
7	Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules, 2020, 10, 959.	4.0	125
8	In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. Journal of Proteomics, 2013, 78, 58-71.	2.4	104
9	The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Reports, 2008, 27, 593-603.	5.6	96
10	Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice. Plant Pathology Journal, 2016, 32, 552-562.	1.7	85
11	Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiologia Plantarum, 2010, 138, 1-9.	5.2	72
12	Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics, 2008, 8, 3577-3587.	2.2	70
13	The RNase Activity of Rice Probenazole-Induced Protein1 (PBZ1) Plays a Key Role in Cell Death in Plants. Molecules and Cells, 2011, 31, 25-32.	2.6	70
14	In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. Journal of Ethnopharmacology, 2012, 144, 335-345.	4.1	70
15	Rice proteomics: A model system for crop improvement and food security. Proteomics, 2014, 14, 593-610.	2.2	68
16	Developing Rice Embryo Proteomics Reveals Essential Role for Embryonic Proteins in Regulation of Seed Germination. Journal of Proteome Research, 2009, 8, 3598-3605.	3.7	66
17	Secretome analysis of differentially induced proteins in rice suspensionâ€cultured cells triggered by rice blast fungus and elicitor. Proteomics, 2009, 9, 1302-1313.	2.2	65
18	Proteomics survey of Solanaceae family: Current status and challenges ahead. Journal of Proteomics, 2017, 169, 41-57.	2.4	65

#	Article	IF	CITATIONS
19	Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics, 2004, 4, 3579-3587.	2.2	63
20	Comparative Secretome Investigation of <i>Magnaporthe oryzae</i> Proteins Responsive to Nitrogen Starvation. Journal of Proteome Research, 2011, 10, 3136-3148.	3.7	62
21	Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics, 2013, 13, 2176-2179.	2.2	61
22	<i>Magnaporthe oryzae</i> -Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. Molecular Plant-Microbe Interactions, 2016, 29, 299-312.	2.6	61
23	In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics, 2017, 169, 125-135.	2.4	61
24	Proteomic analysis of the secretome of rice calli. Physiologia Plantarum, 2009, 135, 331-341.	5.2	60
25	Proteomics Analysis of Rice Lesion Mimic Mutant (<i>spl</i> 1) Reveals Tightly Localized Probenazole-Induced Protein (PBZ1) in Cells Undergoing Programmed Cell Death. Journal of Proteome Research, 2008, 7, 1750-1760.	3.7	55
26	Abnormal Chloroplast Development and Growth Inhibition in Rice Thioredoxin <i>m</i> Knock-Down Plants Â. Plant Physiology, 2008, 148, 808-817.	4.8	55
27	Proteomics of weakly bound cell wall proteins in rice calli. Journal of Plant Physiology, 2009, 166, 675-685.	3.5	49
28	Rice C2-Domain Proteins Are Induced and Translocated to the Plasma Membrane in Response to a Fungal Elicitorâ€. Biochemistry, 2003, 42, 11625-11633.	2.5	47
29	Exogenous Free Ubiquitin Enhances Lily Pollen Tube Adhesion to an in Vitro Stylar Matrix and May Facilitate Endocytosis of SCA. Plant Physiology, 2006, 142, 1397-1411.	4.8	46
30	Expression of BrD1, a Plant Defensin from Brassica rapa, Confers Resistance against Brown Planthopper (Nilaparvata lugens) in Transgenic Rices. Molecules and Cells, 2009, 28, 131-138.	2.6	45
31	Proteomics of rice and <i>Cochliobolus miyabeanus</i> fungal interaction: Insight into proteins at intracellular and extracellular spaces. Proteomics, 2014, 14, 2307-2318.	2.2	45
32	Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var.) Tj ETQq0 ()0r g⊞⊺ /O∖	verl ø æk 10 Tf 5
33	Proteomics of Rice—Magnaporthe oryzae Interaction: What Have We Learned So Far?. Frontiers in Plant Science, 2019, 10, 1383.	3.6	42
34	Common bean proteomics: Present status and future strategies. Journal of Proteomics, 2017, 169, 239-248.	2.4	41
35	Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection. Plant Pathology Journal, 2014, 30, 343-354.	1.7	40
36	Secretome analysis of the rice bacterium <i>Xanthomonas oryzae</i> (<i>Xoo</i>) using in vitro and in planta systems. Proteomics, 2013, 13, 1901-1912.	2.2	38

#	Article	IF	CITATIONS
37	A Multiâ€Omics Analysis of <i>Glycine max</i> Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment. Proteomics, 2018, 18, e1700366.	2.2	38
38	Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots. Plant Cell Reports, 2008, 27, 363-375.	5.6	34
39	Two SCA (Stigma/Style Cysteine-rich Adhesin) Isoforms Show Structural Differences That Correlate with Their Levels of in Vitro Pollen Tube Adhesion Activity. Journal of Biological Chemistry, 2007, 282, 33845-33858.	3.4	33
40	Comparative investigation of seed coats of brown―versus yellowâ€colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics, 2015, 15, 1706-1716.	2.2	32
41	Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chemistry, 2017, 214, 248-258.	8.2	32
42	A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. Journal of Proteomics, 2019, 196, 120-130.	2.4	31
43	<i>GORI</i> , encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. Plant Journal, 2021, 105, 1645-1664.	5.7	31
44	Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. Journal of Proteomics, 2016, 148, 65-74.	2.4	30
45	Identification of Msp1-Induced Signaling Components in Rice Leaves by Integrated Proteomic and Phosphoproteomic Analysis. International Journal of Molecular Sciences, 2019, 20, 4135.	4.1	30
46	Analysis of dynamic protein carbonylation in rice embryo during germination through APâ€ 5 WATH. Proteomics, 2016, 16, 989-1000.	2.2	29
47	A comparative proteomics survey of proteins responsive to phosphorous starvation in roots of hydroponically-grown rice seedlings. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54, 667-677.	0.9	28
48	Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Functional and Integrative Genomics, 2016, 16, 269-279.	3.5	27
49	An insight into the tomato spotted wilt virus (TSWV), tomato and thrips interaction. Plant Biotechnology Reports, 2018, 12, 157-163.	1.5	26
50	CAFRIâ€Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice. Plant Journal, 2020, 104, 532-545.	5.7	26
51	Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. Rice, 2021, 14, 30.	4.0	26
52	Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment. Plant Pathology Journal, 2013, 29, 374-385.	1.7	26
53	A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Molecules and Cells, 2003, 16, 224-31.	2.6	26
54	Expression of a salt-induced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Reports, 2004, 23, 256-262.	5.6	25

#	Article	IF	CITATIONS
55	Protamine sulfate precipitation method depletes abundant plant seed-storage proteins: A case study on legume plants. Proteomics, 2015, 15, 1760-1764.	2.2	25
56	Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity. Journal of Proteomics, 2017, 169, 202-214.	2.4	25
57	Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. Journal of Ginseng Research, 2019, 43, 143-153.	5.7	24
58	TGFamâ€Finder : a novel solution for targetâ€gene family annotation in plants. New Phytologist, 2020, 227, 1568-1581.	7.3	23
59	Isolation of TC/AG Repeat Microsatellite Sequences for Fingerprinting Rice Blast Fungus and Their Possible Horizontal Transfer to Plant Species. Molecules and Cells, 2000, 10, 127-134.	2.6	22
60	Biotic Stress-Responsive Rice Proteome: An Overview. Journal of Plant Biology, 2011, 54, 219-226.	2.1	22
61	Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content. Journal of Agricultural and Food Chemistry, 2015, 63, 7134-7142.	5.2	22
62	Metabolic Profiling-Based Evaluation of the Fermentative Behavior of Aspergillus oryzae and Bacillus subtilis for Soybean Residues Treated at Different Temperatures. Foods, 2020, 9, 117.	4.3	22
63	Secreted Alpha-N-Arabinofuranosidase B Protein Is Required for the Full Virulence of Magnaporthe oryzae and Triggers Host Defences. PLoS ONE, 2016, 11, e0165149.	2.5	21
64	Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach. Expert Review of Proteomics, 2019, 16, 795-804.	3.0	21
65	Phytochemistry of ginsenosides: Recent advancements and emerging roles. Critical Reviews in Food Science and Nutrition, 2023, 63, 613-640.	10.3	21
66	In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells, 2020, 9, 1517.	4.1	19
67	Comprehensive analysis of the expression of twenty-seven beta-1, 3-glucanase genes in rice (Oryza) Tj ETQq1 1	0.784314 2.6	rgBT /Overl <mark>oc</mark>
68	Abundant storage protein depletion from tuber proteins using ethanol precipitation method: Suitability to proteomics study. Proteomics, 2015, 15, 1765-1769.	2.2	17
69	Progress Toward Rice Seed OMICS in Low-Level Gamma Radiation Environment in litate Village, Fukushima. Journal of Heredity, 2018, 109, 206-211.	2.4	17
70	OsMTD2â€mediated reactive oxygen species (ROS) balance is essential for intact pollenâ€ŧube elongation in rice. Plant Journal, 2021, 107, 1131-1147.	5.7	17
71	Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10. Plant Pathology Journal, 2016, 32, 25-32.	1.7	17
72	High-throughput proteome analysis reveals changes of primary metabolism and energy production under artificial aging treatment in Glycine max seeds. Applied Biological Chemistry, 2016, 59, 841-853.	1.9	16

#	Article	IF	CITATIONS
73	A secreted chitinaseâ€like protein (<scp>OsCLP</scp>) supports root growth through calcium signaling in <i>Oryza sativa</i> . Physiologia Plantarum, 2017, 161, 273-284.	5.2	16
74	Characterization of a newly identified rice chitinase-like protein (OsCLP) homologous to xylanase inhibitor. BMC Biotechnology, 2013, 13, 4.	3.3	15
75	Ginseng (Panax sp.) proteomics: an update. Applied Biological Chemistry, 2017, 60, 311-320.	1.9	15
76	Integrated Proteomics and Metabolomics Analysis Highlights Correlative Metabolite-Protein Networks in Soybean Seeds Subjected to Warm-Water Soaking. Journal of Agricultural and Food Chemistry, 2020, 68, 8057-8067.	5.2	15
77	A TMT-Based Quantitative Proteome Analysis to Elucidate the TSWV Induced Signaling Cascade in Susceptible and Resistant Cultivars of Solanum lycopersicum. Plants, 2020, 9, 290.	3.5	15
78	Physiological and proteomic analysis of young rice leaves grown under nitrogen-starvation conditions. Plant Biotechnology Reports, 2011, 5, 309-315.	1.5	13
79	Sound wave affects the expression of ethylene biosynthesis-related genes through control of transcription factors RIN and HB-1. Plant Biotechnology Reports, 2016, 10, 437-445.	1.5	13
80	Prefractionation of protein samples for proteome analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Molecules and Cells, 2003, 16, 316-22.	2.6	13
81	Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions. Plant Pathology Journal, 2017, 33, 458-466.	1.7	12
82	Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves. Plant Physiology and Biochemistry, 2018, 130, 173-180.	5.8	12
83	Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight. Journal of Plant Biotechnology, 2017, 44, 149-155.	0.4	12
84	Comparative proteome profiling of susceptible and resistant rice cultivars identified an arginase involved in rice defense against Xanthomonas oryzae pv. oryzae. Plant Physiology and Biochemistry, 2022, 171, 105-114.	5.8	12
85	Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea. Plant Biotechnology Reports, 2020, 14, 263-274.	1.5	11
86	Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves. Korean Journal of Medicinal Crop Science, 2014, 22, 398-404.	0.4	11
87	Proteomics in Plant Defense Response. , 0, , 585-604.		10
88	Redox properties of a thioredoxin-like Arabidopsis protein, AtTDX. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2213-2221.	2.3	10
89	Protein profiles secreted from phylloplane of rice leaves free from cytosolic proteins: Application to study rice-Magnaporthe Oryzae interactions. Physiological and Molecular Plant Pathology, 2014, 88, 28-35.	2.5	10
90	Label-free quantitative proteome data associated with MSP1 and flg22 induced signaling in rice leaves. Data in Brief, 2018, 20, 204-209.	1.0	10

#	Article	IF	CITATIONS
91	A New SNP in Rice Gene Encoding Pyruvate Phosphate Dikinase (PPDK) Associated with Floury Endosperm. Genes, 2020, 11, 465.	2.4	10
92	Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress. Journal of Plant Biotechnology, 2008, 35, 185-193.	0.4	10
93	Proteasome Inhibitors Affect Appressorium Formation and Pathogenicity of the Rice Blast Fungus, Magnaporthe oryzae. Plant Pathology Journal, 2011, 27, 225-231.	1.7	10
94	Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1. Plant Pathology Journal, 2018, 34, 257-268.	1.7	9
95	Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root. Current Genomics, 2017, 19, 4-11.	1.6	8
96	Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS. Genes and Genomics, 2018, 40, 129-136.	1.4	8
97	Label-free quantitative proteomic analysis determines changes in amino acid and carbohydrate metabolism in three cultivars of Jerusalem artichoke tubers. Plant Biotechnology Reports, 2019, 13, 111-122.	1.5	8
98	Depletion of RuBisCO Protein Using the Protamine Sulfate Precipitation Method. Methods in Molecular Biology, 2015, 1295, 225-233.	0.9	8
99	Optimization of Protein Isolation and Label-Free Quantitative Proteomic Analysis in Four Different Tissues of Korean Ginseng. Plants, 2021, 10, 1409.	3.5	7
100	Crop proteomics: Practical method for high resolution of two-dimensional electrophoresis. Journal of Plant Biotechnology, 2012, 39, 81-92.	0.4	7
101	Rice Proteomic Analysis: Sample Preparation for Protein Identification. Methods in Molecular Biology, 2013, 956, 151-184.	0.9	6
102	Analysis of Grinding Kinetics and Flow Behavior of Adzuki Bean (<scp><i>P</i></scp> <i>haseolus) Tj ETQq0 0 0 r</i>	gBT/Over	loçk 10 Tf 50
103	An Integrated Approach for the Efficient Extraction and Solubilization of Rice Microsomal Membrane Proteins for High-Throughput Proteomics. Frontiers in Plant Science, 2021, 12, 723369.	3.6	6
104	Differential Proteome and Secretome Analysis During Rice–Pathogen Interaction. Methods in Molecular Biology, 2014, 1072, 563-572.	0.9	6
105	Effect of Phytohormones and Chemical Inhibitors on Pathogenesis-related Genes Identified by Differential Hybridization in Rice Suspension Culture Cells. Plant Pathology Journal, 2010, 26, 386-393.	1.7	5
106	Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics. Molecules, 2022, 27, 1111.	3.8	5
107	Molecular and functional characterization of a PEX14 cDNA from rice. Plant Science, 2004, 166, 123-130.	3.6	4

108Proteome data associated with the leaf senescence in Glycine max. Data in Brief, 2016, 9, 90-95.1.04

#	Article	IF	CITATIONS
109	Phosphoproteome data from abscisic acid and ethylene treated Glycine max leaves. Data in Brief, 2018, 20, 516-520.	1.0	4
110	A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars. Journal of Plant Biotechnology, 2020, 47, 209-217.	0.4	4
111	Overexpression of ADP-glucose pyrophosphorylase (IbAGPaseS) affects expression of carbohydrate regulated genes in sweet potato [Ipomoea batatas (L.) Lam. cv. Yulmi]. Genes and Genomics, 2015, 37, 595-605.	1.4	3
112	Gel-based and gel-free proteome data associated with controlled deterioration treatment of Glycine max seeds. Data in Brief, 2017, 15, 449-453.	1.0	3
113	A modified transient gene expression protocol for subcellular protein localization analysis in rice. Plant Biotechnology Reports, 2020, 14, 131-138.	1.5	3
114	Gene Expression Profiling in Rice Infected with Rice Blast Fungus using SAGE. Plant Pathology Journal, 2008, 24, 384-391.	1.7	3
115	An IbEF1 from sweet potato promotes flowering in transgenic tobacco. Genes and Genomics, 2011, 33, 335-341.	1.4	2
116	Development of a Simple and Reproducible Method for Removal of Contaminants from Ginseng Protein Samples Prior to Proteomics Analysis. Journal of Life Science, 2015, 25, 826-832.	0.2	1
117	A Protocol for the Plasma Membrane Proteome Analysis of Rice Leaves. Methods in Molecular Biology, 2020, 2139, 107-115.	0.9	1
118	Application of mass-spectrometry compatible photocleavable surfactant for next-generation proteomics using rice leaves. Journal of Plant Biotechnology, 2021, 48, 165-172.	0.4	0
119	Proteomics of plant-fungal pathogen interaction: an overview. Journal of Plant Biotechnology, 2014, 41, 1-9.	0.4	0
120	Optimization of in vitro lily culture system with different treatments of taurine. Journal of Plant Biotechnology, 2017, 44, 484-489.	0.4	0
121	Unraveling the Molecular Mechanism of Magnaporthe oryzae Induced Signaling Cascade in Rice. , 2020, , 363-377.		0
122	Proteomics as a tool to understand the biology of agricultural crops. , 2022, , 107-122.		0