Manuel RodrÃ-guez-Paredes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/225274/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Cancer epigenetics reaches mainstream oncology. Nature Medicine, 2011, 17, 330-339.	30.7	1,102
2	Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Communications Biology, 2020, 3, 188.	4.4	239
3	Parkinson's disease as a result of aging. Aging Cell, 2015, 14, 293-308.	6.7	165
4	Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene, 2014, 33, 2807-2813.	5.9	126
5	Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 2016, 30, 683-691.	7.2	119
6	The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Research, 2009, 37, 2449-2460.	14.5	85
7	The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Research, 2014, 42, 2185-2196.	14.5	72
8	Control of neuronal differentiation by sumoylation of BRAF35, a subunit of the LSD1-CoREST histone demethylase complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8085-8090.	7.1	68
9	Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis. Cell Reports, 2018, 23, 3407-3418.	6.4	66
10	Reduced <scp>DNA</scp> methylation patterning and transcriptional connectivity define human skin aging. Aging Cell, 2016, 15, 563-571.	6.7	65
11	Methylation profiling identifies two subclasses of squamous cell carcinoma related to distinct cells of origin. Nature Communications, 2018, 9, 577.	12.8	64
12	Epigenetically Regulated Chromosome 14q32 miRNA Cluster Induces Metastasis and Predicts Poor Prognosis in Lung Adenocarcinoma Patients. Molecular Cancer Research, 2018, 16, 390-402.	3.4	63
13	Bone-marrow-derived cell differentiation into microglia: A study in a progressive mouse model of Parkinson's disease. Neurobiology of Disease, 2007, 28, 316-325.	4.4	62
14	DNA Methylation in Epidermal Differentiation, Aging, and Cancer. Journal of Investigative Dermatology, 2020, 140, 38-47.	0.7	54
15	Striatal astrocytes engulf dopaminergic debris in Parkinson's disease: A study in an animal model. PLoS ONE, 2017, 12, e0185989.	2.5	48
16	Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica, 2018, 103, 1462-1471.	3.5	43
17	p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes. PLoS ONE, 2012, 7, e37759.	2.5	42
18	Hand movement distribution in the motor cortex: the influence of a concurrent task and motor imagery. Neurolmage, 2004, 22, 1480-1491.	4.2	40

#	Article	IF	CITATIONS
19	The astrocytic response to the dopaminergic denervation of the striatum. Journal of Neurochemistry, 2016, 139, 81-95.	3.9	40
20	Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Medicine, 2020, 12, 46.	8.2	40
21	The role of non-synaptic extracellular glutamate. Brain Research Bulletin, 2013, 93, 17-26.	3.0	37
22	The importance of non-histone protein methylation in cancer therapy. Nature Reviews Molecular Cell Biology, 2019, 20, 569-570.	37.0	37
23	Impact of DLK1-DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer. Oncotarget, 2018, 9, 4395-4410.	1.8	37
24	The deep mesencephalic nucleus as an output center of basal ganglia: Morphological and electrophysiological similarities with the substantia nigra. Journal of Comparative Neurology, 2001, 438, 12-31.	1.6	28
25	The degeneration and replacement of dopamine cells in Parkinsonââ,¬â,,¢s disease: the role of aging. Frontiers in Neuroanatomy, 2014, 8, 80.	1.7	28
26	Myocardial triggers involved in activation of remote ischaemic preconditioning. Experimental Physiology, 2016, 101, 708-716.	2.0	28
27	Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions. Pflugers Archiv European Journal of Physiology, 2015, 467, 1509-1522.	2.8	27
28	The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia. Frontiers in Neuroscience, 2017, 11, 345.	2.8	25
29	Firing regulation in dopaminergic cells: effect of the partial degeneration of nigrostriatal system in surviving neurons. European Journal of Neuroscience, 2003, 18, 53-60.	2.6	22
30	An increase in MECP2 dosage impairs neural tube formation. Neurobiology of Disease, 2014, 67, 49-56.	4.4	22
31	NOS Expression in Nigral Cells after Excitotoxic and Non-excitotoxic Lesion of the Pedunculopontine Tegmental Nucleus. European Journal of Neuroscience, 1997, 9, 2658-2667.	2.6	19
32	How is firing activity of substantia nigra cells regulated? Relevance of pattern-code in the basal ganglia. Synapse, 2003, 49, 216-225.	1.2	18
33	A Combined Epigenetic Therapy Equals the Efficacy of Conventional Chemotherapy in Refractory Advanced Non–Small Cell Lung Cancer. Cancer Discovery, 2011, 1, 557-559.	9.4	17
34	Dystrophin proteolysis: a potential target for MMP-2 and its prevention by ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H88-H96.	3.2	13
35	The functional interaction of the brain default network with motor networks is modified by aging. Behavioural Brain Research, 2019, 372, 112048.	2.2	13
36	The influence of Parkinson's disease on the functional connectivity of the motor loop of human basal ganglia. Parkinsonism and Related Disorders, 2019, 63, 100-105.	2.2	13

Manuel RodrÃguez-Paredes

#	Article	IF	CITATIONS
37	The functional connectivity in the motor loop of human basal ganglia. Brain Imaging and Behavior, 2017, 11, 417-429.	2.1	12
38	Excitatory responses in the ?direct? striatonigral pathway: Effect of nigrostriatal lesion. Movement Disorders, 2000, 15, 795-803.	3.9	10
39	The organization of the basal ganglia functional connectivity network is non-linear in Parkinson's disease. NeuroImage: Clinical, 2019, 22, 101708.	2.7	9
40	Astrocytes and retrograde degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease: removing axonal debris. Translational Neurodegeneration, 2021, 10, 43.	8.0	6
41	Nigrostriatal cell firing action on the dopamine transporter. European Journal of Neuroscience, 2007, 25, 2755-2765.	2.6	4
42	The dynamic of basal ganglia activity with a multiple covariance method: influences of Parkinson's disease. Brain Communications, 2020, 2, fcz044.	3.3	4
43	Studying the functional connectivity of the primary motor cortex with the binarized cross recurrence plot: The influence of Parkinson's disease. PLoS ONE, 2021, 16, e0252565.	2.5	4
44	Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines, 2021, 9, 1341.	3.2	4
45	mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress, 2017, 1, 55-67.	3.2	3
46	In Vivo Growing of New Cell Colonies in a Portion of Bone Marrow: Potential Use for Indirect Cell Therapy. Cell Medicine, 2010, 1, 93-104.	5.0	0
47	The causal interaction in human basal ganglia. Scientific Reports, 2021, 11, 12989.	3.3	0
48	The Fundamental Role of Epigenetic Regulation in Normal and Disturbed Cell Growth, Differentiation, and Stemness. , 2014, , 1-41.		0
49	Functional Inhibition of Mesenchymal Stem and Progenitor Cells (MSPC) Significantly Contributes to Hematopoietic Insufficiency with Acute Myeloid Leukemia (AML). Blood, 2014, 124, 3492-3492.	1.4	0
50	Abstract 1945: Identification of a miRNA/mRNA network driving non-small cell lung cancer (NSCLC) dissemination. , 2016, , .		0
51	Abstract 2408: Epigenomic characterization of MSC from myeloid malignancies. , 2017, , .		0
52	Abstract 4350: Cell-of-origin differentiation stages define methylation-based subtypes of human colorectal cancer. , 2017, , .		0