Benoit Pujol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252389/publications.pdf Version: 2024-02-01

RENOIT PUIO

#	Article	IF	CITATIONS
1	World Scientists' Warning to Humanity: A Second Notice. BioScience, 2017, 67, 1026-1028.	4.9	817
2	Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 2011, 12, 475-486.	16.3	613
3	The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 2010, 186, 318-332.	7.3	354
4	Reliable selfing rate estimates from imperfect population genetic data. Molecular Ecology, 2007, 16, 2474-2487.	3.9	338
5	World Scientists' Warning of a Climate Emergency. BioScience, 0, , .	4.9	286
6	Reduced inbreeding depression after species range expansion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15379-15383.	7.1	151
7	Are <i>Q</i> _{ST} – <i>F</i> _{ST} comparisons for natural populations meaningful?. Molecular Ecology, 2008, 17, 4782-4785.	3.9	147
8	Reduced Responses to Selection After Species Range Expansion. Science, 2008, 321, 96-96.	12.6	140
9	The Missing Response to Selection in the Wild. Trends in Ecology and Evolution, 2018, 33, 337-346.	8.7	102
10	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	8.7	98
11	Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecology Letters, 2004, 8, 138-147.	6.4	80
12	Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biological Reviews, 2019, 94, 259-282.	10.4	75
13	Gender Variation and Transitions between Sexual Systems in <i>Mercurialis annua</i> (Euphorbiaceae). International Journal of Plant Sciences, 2008, 169, 129-139.	1.3	66
14	ls Non-genetic Inheritance Just a Proximate Mechanism? A Corroboration of the Extended Evolutionary Synthesis. Biological Theory, 2013, 7, 189-195.	1.5	63
15	Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytologist, 2005, 166, 305-318.	7.3	60
16	Germination Ecology of Cassava (Manihot Esculenta Crantz, Euphorbiaceae) in Traditional Agroecosystems: Seed and Seedling Biology of a Vegetatively Propagated Domesticated Plant1. Economic Botany, 2002, 56, 366-379.	1.7	51
17	Extremely reduced dispersal and gene flow in an island bird. Heredity, 2014, 112, 190-196.	2.6	49

2

BENOIT PUJOL

#	Article	IF	CITATIONS
19	The unappreciated ecology of landrace populations: Conservation consequences of soil seed banks in Cassava. Biological Conservation, 2007, 136, 541-551.	4.1	37
20	First genealogy for a wild marine fish population reveals multigenerational philopatry. Proceedings of the United States of America, 2016, 113, 13245-13250.	7.1	37
21	Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters, 2017, 1, 64-72.	3.3	37
22	Photosynthesis and Leaf Structure in Domesticated Cassava (Euphorbiaceae) and a Close Wild Relative: Have Leaf Photosynthetic Parameters Evolved Under Domestication?. Biotropica, 2008, 40, 305-312.	1.6	36
23	A guide to using a multiple-matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance. PLoS ONE, 2018, 13, e0197720.	2.5	35
24	Evolution without standing genetic variation: change in transgenerational plastic response under persistent predation pressure. Heredity, 2018, 121, 266-281.	2.6	34
25	Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae). Journal of Evolutionary Biology, 2006, 19, 85-96.	1.7	32
26	Ecology predicts parapatric distributions in two closely related Antirrhinum majus subspecies. Evolutionary Ecology, 2013, 27, 51-64.	1.2	30
27	Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
28	Post-pollination barriers do not explain the persistence of two distinct Antirrhinum subspecies with parapatric distribution. Plant Systematics and Evolution, 2010, 286, 223-234.	0.9	28
29	A Quantitative Genetic Signature of Senescence in a Short-Lived Perennial Plant. Current Biology, 2014, 24, 744-747.	3.9	28
30	The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird. Journal of Evolutionary Biology, 2016, 29, 824-836.	1.7	27
31	Epigenetic variation for agronomic improvement: an opportunity for vegetatively propagated crops. American Journal of Botany, 2019, 106, 1281-1284.	1.7	23
32	Domestication and defence: Foliar tannins and C/N ratios in cassava and a close wild relative. Acta Oecologica, 2008, 34, 147-154.	1.1	21
33	Locally asymmetric introgressions between subspecies suggest circular range expansion at the <i>Antirrhinum majus</i> global scale. Journal of Evolutionary Biology, 2011, 24, 1433-1441.	1.7	21
34	The Double Pedigree: A Method for Studying Culturally and Genetically Inherited Behavior in Tandem. PLoS ONE, 2013, 8, e61254.	2.5	19
35	RADâ€sequencing for estimating genomic relatedness matrixâ€based heritability in the wild: A case study in roe deer. Molecular Ecology Resources, 2019, 19, 1205-1217.	4.8	18
36	Mountain landscape connectivity and subspecies appurtenance shape genetic differentiation in natural plant populations of the snapdragon (<i>Antirrhinum majus</i> L). Botany Letters, 2017, 164, 111-119.	1.4	14

BENOIT PUJOL

#	Article	IF	CITATIONS
37	Pedigreeâ€free quantitative genetic approach provides evidence for heritability of movement tactics in wild roe deer. Journal of Evolutionary Biology, 2020, 33, 595-607.	1.7	14
38	Different phenotypic plastic responses to predators observed among aphid lineages specialized on different host plants. Scientific Reports, 2019, 9, 9017.	3.3	13
39	Potential adaptive divergence between subspecies and populations of snapdragon plants inferred from <i>Q</i> _{ST} – <i>F</i> _{ST} comparisons. Molecular Ecology, 2020, 29, 3010-3021.	3.9	12
40	Assessing Global DNA Methylation Changes Associated with Plasticity in Seven Highly Inbred Lines of Snapdragon Plants (Antirrhinum majus). Genes, 2019, 10, 256.	2.4	11
41	Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecology Letters, 2020, 23, 265-273.	6.4	11
42	The paradoxical spread of a new Y chromosome – a novel explanation. Trends in Ecology and Evolution, 2009, 24, 59-63.	8.7	10
43	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	8.7	10
44	Natural selection fluctuates at an extremely fine spatial scale inside a wild population of snapdragon plants. Evolution; International Journal of Organic Evolution, 2022, 76, 658-666.	2.3	10
45	Symptoms of population range expansion: lessons from phenotypic and genetic differentiation in hexaploid <i>Mercurialis annua</i> . Plant Ecology and Diversity, 2010, 3, 103-108.	2.4	8
46	Environmental variations mediate duckweed (Lemna minor L.) sensitivity to copper exposure through phenotypic plasticity. Environmental Science and Pollution Research, 2019, 26, 14106-14115.	5.3	7
47	A practical guide to quantifying the effect of genes underlying adaptation in a mixed genomics and evolutionary ecology approach. Acta Botanica Gallica, 2013, 160, 197-204.	0.9	6
48	Response to Kalchhauser et al.: Inherited Gene Regulation Is not Enough to Understand Nongenetic Inheritance. Trends in Ecology and Evolution, 2021, 36, 475-476.	8.7	6
49	Development and characterization of 24 polymorphic microsatellite loci in two Antirrhinum majus subspecies (Plantaginaceae) using pyrosequencing technology. Conservation Genetics Resources, 2012, 4, 75-79.	0.8	5
50	Intraspecific difference among herbivore lineages and their hostâ€plant specialization drive the strength of trophic cascades. Ecology Letters, 2020, 23, 1242-1251.	6.4	5
51	Phenotypic Response to Light Versus Shade Associated with DNA Methylation Changes in Snapdragon Plants (Antirrhinum majus). Genes, 2021, 12, 227.	2.4	5
52	Genetic variation underlies the plastic response to shade of snapdragon plants (Antirrhinum majus L.). Botany Letters, 2021, 168, 256-269.	1.4	5
53	Quantifying heritability and estimating evolutionary potential in the wild when individuals that share genes also share environments. Journal of Animal Ecology, 2022, 91, 1239-1250.	2.8	5
54	Maintien du potentiel adaptatif chez les plantes domestiquées à propagation clonale. Revue D'ethnoécologie, 2012, , .	0.1	4

BENOIT PUJOL

#	Article	IF	CITATIONS
55	Genetic links among individuals: from genealogies to molecular markers. Acta Botanica Gallica, 2013, 160, 221-226.	0.9	3
56	Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant. Frontiers in Genetics, 2015, 6, 57.	2.3	3
57	Nonâ€reproducible signals of adaptation to elevation between open and understorey microhabitats in snapdragon plants. Journal of Evolutionary Biology, 2022, 35, 322-332.	1.7	2
58	Another step towards grasping the complexity of the environmental response of traits. Peer Community in Evolutionary Biology, 0, , .	0.0	0
59	Wild snapdragon plant pedigree sheds light on limited connectivity enhanced by higher migrant reproductive success in a fragmented landscape. Open Research Europe, 0, 1, 145.	2.0	0
60	No evidence of direct contribution of adult plant stages to climate adaptation in snapdragon plants. Botany Letters, 0, , 1-12.	1.4	0