
Leanne D Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2251128/publications.pdf Version: 2024-02-01

LEANNE D CHEN

#	Article	IF	CITATIONS
1	Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017, 139, 11277-11287.	13.7	653
2	Electric Field Effects in Electrochemical CO ₂ Reduction. ACS Catalysis, 2016, 6, 7133-7139.	11.2	411
3	Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nature Communications, 2020, 11, 33.	12.8	188
4	Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO ₂ (110). Journal of Physical Chemistry C, 2017, 121, 11455-11463.	3.1	174
5	Stepwise Intramolecular Photoisomerization of NHC-Chelate Dimesitylboron Compounds with C–C Bond Formation and C–H Bond Insertion. Journal of the American Chemical Society, 2012, 134, 11026-11034.	13.7	95
6	Photo- and Thermal-Induced Multistructural Transformation of 2-Phenylazolyl Chelate Boron Compounds. Journal of the American Chemical Society, 2013, 135, 3407-3410.	13.7	81
7	Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. Journal of Physical Chemistry Letters, 2015, 6, 175-179.	4.6	60
8	Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Central Science, 2017, 3, 1286-1293.	11.3	54
9	Theoretical Limits to the Anode Potential in Aqueous Mg–Air Batteries. Journal of Physical Chemistry C, 2015, 119, 19660-19667.	3.1	47
10	Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer. Nature Communications, 2018, 9, 3202.	12.8	47
11	Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces. ACS Catalysis, 2017, 7, 2528-2534.	11.2	39
12	Facile Electron Transfer to CO ₂ during Adsorption at the Metal Solution Interface. Journal of Physical Chemistry C, 2019, 123, 29278-29283.	3.1	36
13	Tuning the Photoisomerization of a N^Câ€Chelate Organoboron Compound with a MetalAcetylide Unit. Chemistry - A European Journal, 2013, 19, 5314-5323.	3.3	35
14	Inductive effects in cobalt-doped nickel hydroxide electronic structure facilitating urea electrooxidation. Chemosphere, 2021, 279, 130550.	8.2	30
15	Mechanism of ammonia oxidation to dinitrogen, nitrite, and nitrate on βâ€Ni(OH) ₂ from firstâ€principles simulations. Electrochemical Science Advances, 2022, 2, 2100142.	2.8	21
16	Direct Water Decomposition on Transition Metal Surfaces: Structural Dependence and Catalytic Screening. Catalysis Letters, 2016, 146, 718-724.	2.6	18
17	Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4, 641-642.	34.4	15
18	Implications of the fractional charge of hydroxide at the electrochemical interface. Physical Chemistry Chemical Physics, 2020, 22, 6964-6969.	2.8	6

LEANNE D CHEN

#	Article	IF	CITATIONS
19	A DFT Study on the Mechanism and Origin of Regioselectivity in the Rhodium/Dieneâ€Catalyzed Ringâ€Opening Reactions of C1â€Substituted Oxabenzonorbornadienes with Arylboronic Acids. European Journal of Organic Chemistry, 2021, 2021, 1901-1908.	2.4	6
20	A mechanistic study of the [La ₂ (OCH ₃) ₂] ⁴⁺ - and [(1,5,9-triazacyclodo-decane):Zn:(OCH ₃)] ⁺ -catalyzed methanolysis of carbonates: possible application for the recycling of bisphenol A polycarbonates. Canadian Journal of Chemistry, 2013, 91, 1139-1146.	1.1	5
21	The Mechanism and Origin of Enantioselectivity in the Rhodium-Catalyzed Asymmetric Ring-Opening Reactions of Oxabicyclic Alkenes with Organoboronic Acids: A DFT Investigation. Organometallics, 2021, 40, 1588-1597.	2.3	3
22	Embedded Mean-Field Theory for Solution-Phase Transition-Metal Polyolefin Catalysis. Journal of Chemical Theory and Computation, 2020, 16, 4226-4237.	5.3	3
23	Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study. Beilstein Journal of Organic Chemistry, 2022, 18, 251-261.	2.2	2
24	Ruthenium-Catalyzed [2 + 2] versus Homo Diels–Alder [2 + 2 + 2] Cycloadditions of Norbornadiene and Disubstituted Alkynes: A DFT Study. ACS Omega, 2021, 6, 900-911.	3.5	1
25	Dynamic control of programmable catalysts offers new dimension for rate enhancement. Chem Catalysis, 2022, 2, 12-15.	6.1	Ο