Markus H Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2250214/publications.pdf

Version: 2024-02-01

54 papers

4,941 citations

147801 31 h-index 189892 50 g-index

66 all docs 66
docs citations

66 times ranked 6713 citing authors

#	Article	IF	CITATIONS
1	Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine, 2007, 13, 156-163.	30.7	1,161
2	Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nature Medicine, 2014, 20, 511-517.	30.7	734
3	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	11.2	295
4	Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nature Communications, 2016, 7, 10973.	12.8	207
5	Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death and Differentiation, 2021, 28, 3125-3139.	11.2	189
6	Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1371-1379.	2.4	176
7	IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nature Communications, 2020, 11, 120.	12.8	141
8	Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5856-E5865.	7.1	128
9	The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radical Biology and Medicine, 2018, 125, 62-71.	2.9	127
10	Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight, $2017, 2, .$	5.0	115
11	Neutrophil Extracellular Traps Initiate Gallstone Formation. Immunity, 2019, 51, 443-450.e4.	14.3	115
12	Reactive Oxygen Species Deficiency Induces Autoimmunity with Type 1 Interferon Signature. Antioxidants and Redox Signaling, 2014, 21, 2231-2245.	5.4	107
13	The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity, 2021, 54, 1002-1021.e10.	14.3	106
14	Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. FASEB Journal, 2019, 33, 1401-1414.	0.5	90
15	Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 1528-1544.	10.5	90
16	Stromal-driven and Amyloid \hat{l}^2 -dependent induction of neutrophil extracellular traps modulates tumor growth. Nature Communications, 2021, 12, 683.	12.8	77
17	The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats. Annals of the Rheumatic Diseases, 2013, 72, 1239-1248.	0.9	73
18	Vitamin D–dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Science Translational Medicine, 2015, 7, 282ra47.	12.4	72

#	Article	IF	CITATIONS
19	Nucleic acid-associated autoantigens: Pathogenic involvement and therapeutic potential. Journal of Autoimmunity, 2010, 34, J178-J206.	6.5	63
20	How neutrophil extracellular traps orchestrate the local immune response in gout. Journal of Molecular Medicine, 2015, 93, 727-734.	3.9	61
21	Animal Models of Rheumatoid Arthritis (I): Pristane-Induced Arthritis in the Rat. PLoS ONE, 2016, 11, e0155936.	2.5	56
22	Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation. Frontiers in Immunology, 2016, 7, 557.	4.8	55
23	The Rheumatoid Arthritis-Associated Autoantigen hnRNP-A2 (RA33) Is a Major Stimulator of Autoimmunity in Rats with Pristane-Induced Arthritis. Journal of Immunology, 2007, 179, 7568-7576.	0.8	54
24	Why does the gout attack stop? A roadmap for the immune pathogenesis of gout. RMD Open, 2015, 1, e000046.	3.8	53
25	Myeloperoxidase Modulates Inflammation in Generalized Pustular Psoriasis and Additional Rare Pustular Skin Diseases. American Journal of Human Genetics, 2020, 107, 527-538.	6.2	53
26	â€~SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Annals of the Rheumatic Diseases, 2021, 80, 714-726.	0.9	51
27	No Evidence of Pathogenic Involvement of Cathelicidins in Patient Cohorts and Mouse Models of Lupus and Arthritis. PLoS ONE, 2014, 9, e115474.	2.5	45
28	The double-edged role of neutrophil extracellular traps in inflammation. Biochemical Society Transactions, 2019, 47, 1921-1930.	3.4	39
29	Nucleic acid-stimulated antigen-presenting cells trigger T cells to induce disease in a rat transfer model of inflammatory arthritis. Journal of Autoimmunity, 2011, 36, 288-300.	6.5	38
30	Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway. Leukemia, 2018, 32, 2445-2458.	7.2	36
31	Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils. Autoimmunity, 2012, 45, 602-611.	2.6	32
32	Missing in action—The meaning of cell death in tissue damage and inflammation. Immunological Reviews, 2017, 280, 26-40.	6.0	31
33	Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Scientific Reports, 2016, 6, 38229.	3.3	28
34	Chemical Tools for Targeted Amplification of Reactive Oxygen Species in Neutrophils. Frontiers in Immunology, 2018, 9, 1827.	4.8	27
35	Gait changes precede overt arthritis and strongly correlate with symptoms and histopathological events in pristane-induced arthritis. Arthritis Research and Therapy, 2010, 12, R41.	3.5	26
36	Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut, 2022, 71, 2414-2429.	12.1	26

#	Article	IF	CITATIONS
37	Reply to "Neutrophils are not required for resolution of acute gouty arthritis in mice". Nature Medicine, 2016, 22, 1384-1386.	30.7	25
38	Immunodominant Tâ€cell epitopes of hnRNPâ€A2 associated with disease activity in patients with rheumatoid arthritis. European Journal of Immunology, 2010, 40, 1795-1808.	2.9	21
39	Inhibition of Inflammation and Bone Erosion by RNA Interference–Mediated Silencing of Heterogeneous Nuclear RNP A2/B1 in Two Experimental Models of Rheumatoid Arthritis. Arthritis and Rheumatology, 2015, 67, 2536-2546.	5.6	21
40	A Novel Mechanism for Generating the Interferon Signature in Lupus: Opsonization of Dead Cells by Complement and IgM. Arthritis and Rheumatology, 2016, 68, 2917-2928.	5.6	18
41	NOX2 mediates quiescent handling of dead cell remnants in phagocytes. Redox Biology, 2019, 26, 101279.	9.0	15
42	Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide. Frontiers in Immunology, 2017, 8, 16.	4.8	12
43	Dietary Derived Propionate Regulates Pathogenic Fibroblast Function and Ameliorates Experimental Arthritis and Inflammatory Tissue Priming. Nutrients, 2021, 13, 1643.	4.1	12
44	Immmunopathogenesis of Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 2009, 1173, 391-400.	3.8	8
45	A model of chronic enthesitis and new bone formation characterized by multimodal imaging. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	8
46	A Common Pathway for All Autoimmune Diseases? The Unholy Alliance of Environment, Cell Death and Nucleic Acids. Current Immunology Reviews, 2009, 5, 69-88.	1.2	7
47	Stromal cell regulation of inflammatory responses. Current Opinion in Immunology, 2022, 74, 92-99.	5.5	5
48	Autoantibodies in rheumatoid arthritis., 2015,, 750-757.		4
49	Altered cardiac gene expression of noradrenaline enzymes, transporter and \hat{l}^2 -adrenoceptors in rat model of rheumatoid arthritis. Autonomic Neuroscience: Basic and Clinical, 2017, 208, 165-169.	2.8	2
50	The antimicrobial peptide rCRAMP is strongly upregulated during experimental arthritis in the rat. Annals of the Rheumatic Diseases, 2012, 71, A29.2-A29.	0.9	1
51	Title is missing!. Arthritis Research, 2005, 7, P156.	2.0	0
52	The anti-microbial peptide rCRAMP is strongly upregulated during experimental arthritis in the rat. Journal of Translational Medicine, $2011, 9, \dots$	4.4	0
53	A4.8â€The oxidative burst mediates resolution of inflammation and bone homeostasis in gout. Annals of the Rheumatic Diseases, 2015, 74, A39.2-A39.	0.9	0
54	SP0104â€THE JANUS-FACED GLADIATOR: NEUTROPHILS IN STERILE INFLAMMATION AND AUTOIMMUNITY. , 20	019,,	0