List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage, 2013, 77, 114-124.	4.2	266
2	Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. NeuroImage, 2018, 168, 222-241.	4.2	220
3	Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid. Journal of Magnetic Resonance, 2013, 237, 73-78.	2.1	122
4	Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. Magnetic Resonance in Medicine, 2014, 71, 1798-1812.	3.0	115
5	Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer. Magnetic Resonance in Medicine, 2015, 74, 1556-1563.	3.0	94
6	Magnetization transfer contrast–suppressed imaging of amide proton transfer and relayed nuclear overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T. Magnetic Resonance in Medicine, 2016, 75, 88-96.	3.0	72
7	Natural Dâ€glucose as a biodegradable MRI relaxation agent. Magnetic Resonance in Medicine, 2014, 72, 823-828.	3.0	69
8	Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian lineâ€shape fitting CEST method. Magnetic Resonance in Medicine, 2019, 81, 69-78.	3.0	69
9	Investigation of the contribution of total creatine to the CEST <i>Z</i> â€spectrum of brain using a knockout mouse model. NMR in Biomedicine, 2017, 30, e3834.	2.8	64
10	Functional nanoparticles for magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 814-841.	6.1	63
11	Altered <scp>d</scp> -glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI. Science Advances, 2020, 6, eaba3884.	10.3	60
12	Achieving 1% NMR polarization in water in less than 1min using SABRE. Journal of Magnetic Resonance, 2014, 246, 119-121.	2.1	59
13	A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1, 977-982.	22.5	58
14	In vivo imaging of phosphocreatine with artificial neural networks. Nature Communications, 2020, 11, 1072.	12.8	55
15	Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. NeuroImage, 2019, 188, 380-390.	4.2	50
16	Detection of rapidly exchanging compounds using onâ€resonance frequencyâ€labeled exchange (FLEX) transfer. Magnetic Resonance in Medicine, 2012, 68, 1048-1055.	3.0	47
17	CEST MRI of 3â€Oâ€methylâ€Dâ€glucose uptake and accumulation in brain tumors. Magnetic Resonance in Medicine, 2019, 81, 1993-2000.	3.0	42
18	Magnetic resonance imaging of glycogen using its magnetic coupling with water. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3144-3149.	7.1	41

#	Article	IF	CITATIONS
19	Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Scientific Reports, 2017, 7, 4644.	3.3	38
20	Onâ€resonance variable delay multipulse scheme for imaging of fastâ€exchanging protons and semisolid macromolecules. Magnetic Resonance in Medicine, 2017, 77, 730-739.	3.0	35
21	Separating fast and slow exchange transfer and magnetization transfer using offâ€resonance variableâ€delay multipleâ€pulse (VDMP) MRI. Magnetic Resonance in Medicine, 2018, 80, 1568-1576.	3.0	34
22	Characterization of tumor vascular permeability using natural dextrans and CEST MRI. Magnetic Resonance in Medicine, 2018, 79, 1001-1009.	3.0	33
23	An immunocompetent mouse model of human glioblastoma. Oncotarget, 2017, 8, 61072-61082.	1.8	30
24	Highâ€resolution creatine mapping of mouse brain at 11.7 T using nonâ€steadyâ€state chemical exchange saturation transfer. NMR in Biomedicine, 2019, 32, e4168.	2.8	29
25	CEST MRI of sepsisâ€induced acute kidney injury. NMR in Biomedicine, 2018, 31, e3942.	2.8	28
26	Multiâ€echo Length and Offset VARied Saturation (MeLOVARS) method for improved CEST imaging. Magnetic Resonance in Medicine, 2015, 73, 488-496.	3.0	27
27	D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1013-1025.	4.3	27
28	GlucoCEST imaging with onâ€resonance variable delay multiple pulse (onVDMP) MRI. Magnetic Resonance in Medicine, 2019, 81, 47-56.	3.0	26
29	CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3T. Theranostics, 2020, 10, 2215-2228.	10.0	26
30	Wholeâ€brain amide CEST imaging at 3T with a steadyâ€state radial MRI acquisition. Magnetic Resonance in Medicine, 2021, 86, 893-906.	3.0	26
31	Imaging of Endogenous Exchangeable Proton Signals in the Human Brain Using Frequency Labeled Exchange Transfer Imaging. Magnetic Resonance in Medicine, 2013, 69, 966-973.	3.0	25
32	CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magnetic Resonance in Medicine, 2018, 80, 1320-1340.	3.0	25
33	CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1579-1591.	2.0	24
34	Highâ€sensitivity CEST mapping using a spatiotemporal correlationâ€enhanced method. Magnetic Resonance in Medicine, 2020, 84, 3342-3350.	3.0	24
35	Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease atÂ3ÂT. Magnetic Resonance in Medicine, 2022, 87, 1529-1545.	3.0	22
36	Screening CEST contrast agents using ultrafast CEST imaging. Journal of Magnetic Resonance, 2016, 265, 224-229.	2.1	21

#	Article	IF	CITATIONS
37	Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neurolmage, 2021, 236, 118071.	4.2	20
38	CEST MRI monitoring of tumor response to vascular disrupting therapy using high molecular weight dextrans. Magnetic Resonance in Medicine, 2019, 82, 1471-1479.	3.0	18
39	Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR in Biomedicine, 2023, 36, e4671.	2.8	18
40	A Novel Experimental Animal Model of Adult Chronic Hydrocephalus. Neurosurgery, 2016, 79, 746-756.	1.1	17
41	¹⁵ N Heteronuclear Chemical Exchange Saturation Transfer MRI. Journal of the American Chemical Society, 2016, 138, 11136-11139.	13.7	16
42	The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of glioblastoma. Magnetic Resonance in Medicine, 2019, 81, 3798-3807.	3.0	13
43	Age-Related Alterations in Brain Perfusion, Venous Oxygenation, and Oxygen Metabolic Rate of Mice: A 17-Month Longitudinal MRI Study. Frontiers in Neurology, 2020, 11, 559.	2.4	13
44	Fast whole brain MR imaging of dynamic susceptibility contrast changes in the cerebrospinal fluid (cDSC MRI). Magnetic Resonance in Medicine, 2020, 84, 3256-3270.	3.0	12
45	Mechanism and quantitative assessment of saturation transfer for waterâ€based detection of the aliphatic protons in carbohydrate polymers. Magnetic Resonance in Medicine, 2021, 85, 1643-1654.	3.0	12
46	Sensitivity schemes for dynamic glucoseâ€enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3ÂT. NMR in Biomedicine, 2022, 35, e4640.	2.8	12
47	Quantitative assessment of cerebral venous blood T ₂ in mouse at 11.7T: Implementation, optimization, and age effect. Magnetic Resonance in Medicine, 2018, 80, 521-528.	3.0	11
48	Optimization of phaseâ€contrast MRI for the estimation of global cerebral blood flow of mice at 11.7T. Magnetic Resonance in Medicine, 2019, 81, 2566-2575.	3.0	11
49	Brain metabolism in tau and amyloid mouse models of Alzheimer's disease: An MRI study. NMR in Biomedicine, 2021, 34, e4568.	2.8	11
50	Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging. Magnetic Resonance in Medicine, 2016, 75, 238-248.	3.0	10
51	In vivo assessment of the placental anatomy and perfusion in a mouse model of intrauterine inflammation. Journal of Magnetic Resonance Imaging, 2018, 47, 1260-1267.	3.4	10
52	Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis with on resonance variable delay multiple pulse (onVDMP) CEST MRI. NeuroImage, 2020, 204, 116245.	4.2	10
53	Relayed nuclear Overhauser enhancement imaging with magnetization transfer contrast suppression at 3 T. Magnetic Resonance in Medicine, 2021, 85, 254-267.	3.0	10
54	Dynamic glucose enhanced MRI of the placenta in a mouse model of intrauterine inflammation. Placenta, 2018, 69, 86-91.	1.5	9

#	Article	IF	CITATIONS
55	Aqueductal Cerebrospinal Fluid Stroke Volume Flow in a Rodent Model of Chronic Communicating Hydrocephalus: Establishing a Homogeneous Study Population for Cerebrospinal Fluid Dynamics Exploration. World Neurosurgery, 2019, 128, e1118-e1125.	1.3	8
56	Relayed nuclear Overhauser effect weighted (rNOEw) imaging identifies multiple sclerosis. NeuroImage: Clinical, 2021, 32, 102867.	2.7	8
57	Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics, 2021, 11, 6240-6250.	10.0	7
58	Dynamic contrastâ€enhanced CEST MRI using a low molecular weight dextran. NMR in Biomedicine, 2021, , e4649.	2.8	7
59	Cerebrospinal fluidâ€ŧissue exchange revealed by phase alternate labeling with null recovery MRI. Magnetic Resonance in Medicine, 2022, 87, 1207-1217.	3.0	7
60	Ageâ€dependent cerebrospinal fluidâ€tissue water exchange detected by magnetization transfer indirect spin labeling MRI. Magnetic Resonance in Medicine, 2022, 87, 2287-2298.	3.0	6
61	Detection of electrostatic molecular binding using the water proton signal. Magnetic Resonance in Medicine, 2022, 88, 901-915.	3.0	5
62	Quantitative cerebrovascular reactivity <scp>MRI</scp> in mice using acetazolamide challenge. Magnetic Resonance in Medicine, 2022, 88, 2233-2241.	3.0	5
63	Traumatic brain injury does not disrupt costimulatory blockade-induced immunological tolerance to glial-restricted progenitor allografts. Journal of Neuroinflammation, 2021, 18, 104.	7.2	3
64	Mutant G2019S-LRRK2 Induces Abnormalities in Arteriolar Cerebral Blood Volume in Mouse Brains: An MRI Study. Neurodegenerative Diseases, 2020, 20, 65-72.	1.4	1
65	Chapter 6 General Theory of CEST Image Acquisition and Post-Processing. , 2017, , 55-96.		0