Natalie Abrams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 2001, 29, 22-28.	14.5	1,733
2	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
3	Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438, 1157-1161.	27.8	1,128
4	SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genetics and Biology, 2010, 47, 736-741.	2.1	698
5	CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Research, 2003, 31, 383-387.	14.5	673
6	Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 2008, 26, 1161-1168.	17.5	427
7	Sodium Ion Cycle in Bacterial Pathogens: Evidence from Cross-Genome Comparisons. Microbiology and Molecular Biology Reviews, 2001, 65, 353-370.	6.6	206
8	Beyond aflatoxin: four distinct expression patterns and functional roles associated with <i>Aspergillus flavus</i> secondary metabolism gene clusters. Molecular Plant Pathology, 2010, 11, 213-226.	4.2	168
9	Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics, 2012, 13, 525.	2.8	150
10	Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen <i>Rhizoctonia solani</i> AG-3. FEMS Microbiology Letters, 2014, 352, 165-173.	1.8	143
11	MMDB: Entrez's 3D-structure database. Nucleic Acids Research, 2003, 31, 474-477.	14.5	137
12	Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiology Letters, 2011, 322, 145-149.	1.8	115
13	Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements. Genome Biology and Evolution, 2010, 2, 102-116.	2.5	106
14	Potential of Aspergillus flavus genomics for applications in biotechnology. Trends in Biotechnology, 2009, 27, 151-157.	9.3	96
15	Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed. Genome Announcements, 2015, 3, .	0.8	96
16	What can comparative genomics tell us about species concepts in the genus Aspergillus?. Studies in Mycology, 2007, 59, 11-17.	7.2	83
17	Inactivation of Pasteurella (Mannheimia) haemolytica Leukotoxin Causes Partial Attenuation of Virulence in a Calf Challenge Model. Infection and Immunity, 2000, 68, 3916-3922.	2.2	74
18	Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies. Toxins, 2011, 3, 737-753.	3.4	67

NATALIE ABRAMS

#	Article	IF	CITATIONS
19	Evidence for genetic differentiation and variable recombination rates among Dutch populations of the opportunistic human pathogenAspergillus fumigatus. Molecular Ecology, 2012, 21, 57-70.	3.9	65
20	The histone variant H2A.X is a regulator of the epithelial–mesenchymal transition. Nature Communications, 2016, 7, 10711.	12.8	62
21	Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome. Proteome Science, 2012, 10, 30.	1.7	56
22	Genetic Analysis Using an Isogenic Mating Pair of Aspergillus fumigatus Identifies Azole Resistance Genes and Lack of MAT Locus's Role in Virulence. PLoS Pathogens, 2015, 11, e1004834.	4.7	52
23	Draft Genome Sequence of the Plant-Pathogenic Soil Fungus Rhizoctonia solani Anastomosis Group 3 Strain Rhs1AP. Genome Announcements, 2014, 2, .	0.8	49
24	Clonality Despite Sex: The Evolution of Host-Associated Sexual Neighborhoods in the Pathogenic Fungus Penicillium marneffei. PLoS Pathogens, 2012, 8, e1002851.	4.7	44
25	Carbohydrateâ€active enzymes revealed in <i>Coptotermes formosanus</i> (Isoptera: Rhinotermitidae) transcriptome. Insect Molecular Biology, 2012, 21, 235-245.	2.0	43
26	Whole genome comparison of theA. fumigatusfamily. Medical Mycology, 2006, 44, 3-7.	0.7	42
27	Hydrolysis of filterâ€paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of <i>Coptotermes formosanus</i> . Insect Science, 2010, 17, 245-252.	3.0	36
28	Large-Scale Transcriptional Response to Hypoxia in Aspergillus fumigatus Observed Using RNAseq Identifies a Novel Hypoxia Regulated ncRNA. Mycopathologia, 2014, 178, 331-339.	3.1	29
29	Genome Sequence of the AIDS-Associated Pathogen Penicillium marneffei (ATCC18224) and Its Near Taxonomic Relative Talaromyces stipitatus (ATCC10500). Genome Announcements, 2015, 3, .	0.8	29
30	Plasmids for heterologous expression in Pasteurella haemolytica. Gene, 1997, 186, 207-211.	2.2	24
31	Identification of the Genomic Insertion Site of Pmel-1 TCR \hat{I}_\pm and \hat{I}^2 Transgenes by Next-Generation Sequencing. PLoS ONE, 2014, 9, e96650.	2.5	24
32	Phylogenomic Analysis of the <i>Giardia intestinalis</i> Transcarboxylase Reveals Multiple Instances of Domain Fusion and Fission in the Evolution of Biotin-Dependent Enzymes. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 172-189.	1.0	15
33	Triallelic SNP-mediated genotyping of regenerated protoplasts of the heterokaryotic fungus Rhizoctonia solani. Journal of Biotechnology, 2012, 158, 144-150.	3.8	8
34	Evolution of Eukaryotic Gene Repertoire and Gene Structure: Discovering the Unexpected Dynamics of Genome Evolution. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 293-302.	1.1	6
35	Escherichia coli strain for thermoinducible T7 RNA polymerase-driven expression. Gene, 1996, 177, 267-268.	2.2	4
36	Metabolic Regulation of Inflammation and Its Resolution: Current Status, Clinical Needs, Challenges, and Opportunities. Journal of Immunology, 2021, 207, 2625-2630.	0.8	2