List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249601/publications.pdf Version: 2024-02-01



Кетти Менрие

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genome-Wide Search and Identification of a Novel Gel-Forming MucinMUC19/Muc19in Glandular<br>Tissues. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 155-165.                                           | 2.9 | 195       |
| 2  | Physiological Roles of the Intermediate Conductance, Ca2+-activated Potassium Channel Kcnn4.<br>Journal of Biological Chemistry, 2004, 279, 47681-47687.                                                                       | 3.4 | 173       |
| 3  | Anthranilate Fluorescence Marks a Calcium-Propagated Necrotic Wave That Promotes Organismal<br>Death in C. elegans. PLoS Biology, 2013, 11, e1001613.                                                                          | 5.6 | 123       |
| 4  | Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. Journal of<br>Biological Chemistry, 2016, 291, 20188-20197.                                                                                   | 3.4 | 118       |
| 5  | The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7366-7371.                    | 7.1 | 114       |
| 6  | A Reduction in Intestinal Cell pH Due to Loss of the Caenorhabditis elegans Na+/H+ Exchanger NHX-2<br>Increases Life Span. Journal of Biological Chemistry, 2003, 278, 44657-44666.                                            | 3.4 | 108       |
| 7  | cDNA Cloning and Expression of a Family of<br>UDP-N-acetyl-dgalactosamine:PolypeptideN-Acetylgalactosaminyltransferase Sequence Homologs<br>fromCaenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 8268-8277. | 3.4 | 104       |
| 8  | Loss of Hyperpolarization-activated Clâ^' Current in Salivary Acinar Cells from Clcn2 Knockout Mice.<br>Journal of Biological Chemistry, 2002, 277, 23604-23611.                                                               | 3.4 | 104       |
| 9  | Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the<br><i>Clcn3</i> Cl <sup>â²</sup> channel gene. Journal of Physiology, 2002, 545, 207-216.                                    | 2.9 | 95        |
| 10 | Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels. Brain Research, 2002, 958, 227-250.                                                                     | 2.2 | 94        |
| 11 | Ste20-Type Kinases: Evolutionarily Conserved Regulators of Ion Transport and Cell Volume.<br>Physiology, 2006, 21, 61-68.                                                                                                      | 3.1 | 91        |
| 12 | Cardioprotection by the mitochondrial unfolded protein response requires ATF5. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2019, 317, H472-H478.                                                     | 3.2 | 90        |
| 13 | The Nck-interacting Kinase (NIK) Phosphorylates the Na+-H+ Exchanger NHE1 and Regulates NHE1<br>Activation by Platelet-derived Growth Factor. Journal of Biological Chemistry, 2001, 276, 31349-31356.                         | 3.4 | 88        |
| 14 | The NHX Family of Na+-H+ Exchangers in Caenorhabditis elegans. Journal of Biological Chemistry, 2002, 277, 29036-29044.                                                                                                        | 3.4 | 74        |
| 15 | Defective Fluid Secretion and NaCl Absorption in the Parotid Glands of Na+/H+ Exchanger-deficient<br>Mice. Journal of Biological Chemistry, 2001, 276, 27042-27050.                                                            | 3.4 | 72        |
| 16 | Ischemic preconditioning: The role of mitochondria and aging. Experimental Gerontology, 2012, 47, 1-7.                                                                                                                         | 2.8 | 69        |
| 17 | Molecular identification of Ca2+-activated K+ channels in parotid acinar cells. American Journal of<br>Physiology - Cell Physiology, 2003, 284, C535-C546.                                                                     | 4.6 | 68        |
| 18 | Metabolic Acidosis Increases Intracellular Calcium in Bone Cells Through Activation of the Proton Receptor OGR1. Journal of Bone and Mineral Research, 2009, 24, 305-313.                                                      | 2.8 | 67        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Oscillatory Transepithelial H+ Flux Regulates a Rhythmic Behavior in C. elegans. Current Biology, 2008, 18, 297-302.                                                                                                   | 3.9 | 64        |
| 20 | Molecular and Functional Characterization of a Murine Calcium-activated Chloride Channel Expressed in Smooth Muscle. Journal of Biological Chemistry, 2002, 277, 18586-18591.                                          | 3.4 | 63        |
| 21 | GCK-3, a Newly Identified Ste20 Kinase, Binds To and Regulates the Activity of a Cell Cycle–dependent<br>CIC Anion Channel. Journal of General Physiology, 2005, 125, 113-125.                                         | 1.9 | 63        |
| 22 | SLO-2 Is Cytoprotective and Contributes to Mitochondrial Potassium Transport. PLoS ONE, 2011, 6, e28287.                                                                                                               | 2.5 | 62        |
| 23 | Charge Distribution of Flanking Amino Acids Influences O-Glycan Acquisition in Vivo. Journal of<br>Biological Chemistry, 1996, 271, 7061-7065.                                                                         | 3.4 | 61        |
| 24 | Genetic hypercalciuric stone-forming rats. Current Opinion in Nephrology and Hypertension, 2006, 15, 403-418.                                                                                                          | 2.0 | 59        |
| 25 | Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in <i>C. elegans</i> . American Journal of Physiology - Cell Physiology, 2009, 297, C1071-C1081. | 4.6 | 59        |
| 26 | A Quaternary Transcription Termination Complex. Journal of Molecular Biology, 1994, 243, 830-839.                                                                                                                      | 4.2 | 54        |
| 27 | Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH.<br>Journal of Molecular and Cellular Cardiology, 2018, 121, 155-162.                                                   | 1.9 | 53        |
| 28 | A Novel Mitochondrial K <sub>ATP</sub> Channel Assay. Circulation Research, 2010, 106, 1190-1196.                                                                                                                      | 4.5 | 52        |
| 29 | Quantitative Analysis of the Voltage-dependent Gating of Mouse Parotid ClC-2 Chloride Channel.<br>Journal of General Physiology, 2005, 126, 591-603.                                                                   | 1.9 | 49        |
| 30 | Function of a STIM1 Homologue in C. elegans: Evidence that Store-operated Ca2+ Entry Is Not Essential<br>for Oscillatory Ca2+ Signaling and ER Ca2+ Homeostasis. Journal of General Physiology, 2006, 128,<br>443-459. | 1.9 | 45        |
| 31 | Into Ion Channel and Transporter Function. Caenorhabditis elegans CIC-type chloride channels: novel variants and functional expression. American Journal of Physiology - Cell Physiology, 2000, 279, C2052-C2066.      | 4.6 | 40        |
| 32 | Intestinal Ca <sup>2+</sup> wave dynamics in freely moving <i>C. elegans</i> coordinate execution of a rhythmic motor program. American Journal of Physiology - Cell Physiology, 2008, 294, C333-C344.                 | 4.6 | 40        |
| 33 | Fndc-1 contributes to paternal mitochondria elimination in C.Âelegans. Developmental Biology, 2019,<br>454, 15-20.                                                                                                     | 2.0 | 39        |
| 34 | Mitochondrial Fragmentation Leads to Intracellular Acidification in <i>Caenorhabditis elegans</i> and<br>Mammalian Cells. Molecular Biology of the Cell, 2010, 21, 2191-2201.                                          | 2.1 | 38        |
| 35 | Kir6.2 is not the mitochondrial K <sub>ATP</sub> channel but is required for cardioprotection by ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1439-H1445.  | 3.2 | 38        |
| 36 | The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection.<br>Biochemical Journal, 2017, 474, 2067-2094.                                                                           | 3.7 | 36        |

| #  | Article                                                                                                                                                                                                                      | IF       | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| 37 | Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model. Molecular Neurodegeneration, 2020, 15, 65.                                     | 10.8     | 35            |
| 38 | A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel.<br>PeerJ, 2013, 1, e48.                                                                                                          | 2.0      | 34            |
| 39 | The Mitochondrial Unfolded Protein Response Protects against Anoxia in Caenorhabditis elegans.<br>PLoS ONE, 2016, 11, e0159989.                                                                                              | 2.5      | 33            |
| 40 | The abts and sulp families of anion transporters from Caenorhabditis elegans. American Journal of<br>Physiology - Cell Physiology, 2005, 289, C341-C351.                                                                     | 4.6      | 32            |
| 41 | lsoform-specific O-glycosylation by murine UDP-GalNAc:polypeptide<br>N-acetylgalactosaminyltransferase-T3, in vivo. Glycobiology, 1998, 8, 367-371.                                                                          | 2.5      | 31            |
| 42 | Acute inhibition of brain-specific Na <sup>+</sup> /H <sup>+</sup> exchanger isoform 5 by protein<br>kinases A and C and cell shrinkage. American Journal of Physiology - Cell Physiology, 2001, 281,<br>C1146-C1157.        | 4.6      | 31            |
| 43 | Charge distribution of flanking amino acids inhibits O-glycosylation of several single-site acceptors in vivo. Glycobiology, 1997, 7, 1053-1060.                                                                             | 2.5      | 29            |
| 44 | The C. elegans mitochondrial K+ATP channel: A potential target for preconditioning. Biochemical and Biophysical Research Communications, 2008, 376, 625-628.                                                                 | 2.1      | 28            |
| 45 | Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in<br>Caenorhabditis elegans. Scientific Reports, 2016, 6, 29695.                                                               | 3.3      | 28            |
| 46 | Alternative splicing of N- and C-termini of aC. elegansClC channel alters gating and sensitivity to external Clâ^and H+. Journal of Physiology, 2004, 555, 97-114.                                                           | 2.9      | 26            |
| 47 | The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to<br>Understanding and Treating Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 5103-5120.                             | 4.0      | 26            |
| 48 | Overproduced rho factor from p39AS has lysine replacing glutamic acid at residue 155 in the linker region between its RNA and ATP binding domains. Nucleic Acids Research, 1992, 20, 6107-6107.                              | 14.5     | 25            |
| 49 | Cardiac metabolic effects of K <sub>Na</sub> 1.2 channel deletion and evidence for its mitochondrial localization. FASEB Journal, 2018, 32, 6135-6149.                                                                       | 0.5      | 23            |
| 50 | Sex Modifies Genetic Effects on Residual Variance in Urinary Calcium Excretion in Rat ( <i>Rattus) Tj ETQq0 0 0 r</i>                                                                                                        | gBT/Over | lock 10 Tf 50 |
| 51 | Carboxy Terminus Splice Variation Alters ClC Channel Gating and Extracellular Cysteine Reactivity.<br>Biophysical Journal, 2006, 90, 3570-3581.                                                                              | 0.5      | 21            |
| 52 | Regulation of acid-base transporters by reactive oxygen species following mitochondrial fragmentation. American Journal of Physiology - Cell Physiology, 2012, 302, C1045-C1054.                                             | 4.6      | 20            |
| 53 | Mitochondrial ATPâ€sensitive potassium channel activity and hypoxic preconditioning are independent of an inwardly rectifying potassium channel subunit in <i>Caenorhabditis elegans</i> . FEBS Letters, 2012, 586, 428-434. | 2.8      | 19            |

54 Intracellular pH Measurements In Vivo Using Green Fluorescent Protein Variants. , 2006, 351, 223-240.

18

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | miR-786 Regulation of a Fatty-Acid Elongase Contributes to Rhythmic Calcium-Wave Initiation in<br>C.Âelegans. Current Biology, 2012, 22, 2213-2220.                                                                     | 3.9 | 17        |
| 56 | A C. elegans model of electronic cigarette use: Physiological effects of e-liquids in nematodes. BMC<br>Pharmacology & Toxicology, 2015, 16, 32.                                                                        | 2.4 | 17        |
| 57 | Cardiac <i>Slo2.1</i> Is Required for Volatile Anesthetic Stimulation of K+ Transport and Anesthetic Preconditioning. Anesthesiology, 2016, 124, 1065-1076.                                                             | 2.5 | 17        |
| 58 | Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for<br>direct enzyme (de)acetylation. Biochemical Journal, 2017, 474, 2829-2839.                                          | 3.7 | 17        |
| 59 | A calcineurin homologous protein is required for sodium-proton exchange events in the C. elegans<br>intestine. American Journal of Physiology - Cell Physiology, 2011, 301, C1389-C1403.                                | 4.6 | 16        |
| 60 | Bicarbonate modulates oxidative and functional damage in ischemia–reperfusion. Free Radical Biology<br>and Medicine, 2013, 55, 46-53.                                                                                   | 2.9 | 16        |
| 61 | Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's<br>Disease. Biology, 2021, 10, 1047.                                                                              | 2.8 | 14        |
| 62 | Altered gating and regulation of a carboxy-terminal ClC channel mutant expressed in the<br>Caenorhabditis elegans oocyte. American Journal of Physiology - Cell Physiology, 2006, 290,<br>C1109-C1118.                  | 4.6 | 13        |
| 63 | Semaphorin 3A potentiates the profibrotic effects of transforming growth factor-β1 in the cornea.<br>Biochemical and Biophysical Research Communications, 2020, 521, 333-339.                                           | 2.1 | 13        |
| 64 | FNDC-1-mediated mitophagy and ATFS-1 coordinate to protect against hypoxia-reoxygenation.<br>Autophagy, 2021, 17, 3389-3401.                                                                                            | 9.1 | 13        |
| 65 | Effect of <i>Caenorhabditis elegans</i> age and genotype on horizontal gene transfer in intestinal bacteria. FASEB Journal, 2013, 27, 760-768.                                                                          | 0.5 | 11        |
| 66 | Ca2+-activated Clâ^' currents in salivary and lacrimal glands. Current Topics in Membranes, 2002, ,<br>209-230.                                                                                                         | 0.9 | 10        |
| 67 | Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. Biochimica Et Biophysica<br>Acta - Molecular Cell Research, 2012, 1823, 808-817.                                                              | 4.1 | 9         |
| 68 | Analysis of Ca2+ Signaling Motifs That Regulate Proton Signaling through the Na+/H+ Exchanger<br>NHX-7 during a Rhythmic Behavior in Caenorhabditis elegans*. Journal of Biological Chemistry, 2013,<br>288, 5886-5895. | 3.4 | 8         |
| 69 | Expression of the CHOP-inducible carbonic anhydrase CAVI-b is required for BDNF-mediated protection from hypoxia. Brain Research, 2014, 1543, 28-37.                                                                    | 2.2 | 8         |
| 70 | Calcineurin homologous proteins regulate the membrane localization and activity of sodium/proton exchangers in C. elegans. American Journal of Physiology - Cell Physiology, 2016, 310, C233-C242.                      | 4.6 | 7         |
| 71 | Mucin-Type O-Glycosylation in C.elegans Is Initiated by a Family of Glycosyltransferases Trends in Glycoscience and Glycotechnology, 2001, 13, 463-479.                                                                 | 0.1 | 7         |
| 72 | Biosynthesis of a low-molecular-mass rat submandibular gland mucin glycoprotein in COS7 cells.<br>Biochemical Journal, 1997, 323, 497-502.                                                                              | 3.7 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock. ELife,<br>0, 11, .                                                                                                                                                                                      | 6.0 | 6         |
| 74 | H(OH), H(OH), H(OH): a holiday perspective. Focus on "Mouse Slc4a11 expressed in Xenopus oocytes is<br>an ideally selective H+/OHâ^' conductance pathway that is stimulated by rises in intracellular and<br>extracellular pH― American Journal of Physiology - Cell Physiology, 2016, 311, C942-C944. | 4.6 | 5         |
| 75 | The inositol 1,4,5â€ŧrisphosphate receptor in <i>C. elegans</i> . Environmental Sciences Europe, 2012, 1,<br>321-328.                                                                                                                                                                                  | 5.5 | 4         |
| 76 | Membrane ion transport in non-excitable tissues. WormBook, 2014, , 1-22.                                                                                                                                                                                                                               | 5.3 | 4         |
| 77 | An Anoxia-starvation Model for Ischemia/Reperfusion in <em>C. elegans</em> . Journal of Visualized Experiments, 2014, , .                                                                                                                                                                              | 0.3 | 2         |
| 78 | Defining the Role of Mitochondrial Fission in Corneal Myofibroblast Differentiation. , 2022, 63, 2.                                                                                                                                                                                                    |     | 2         |
| 79 | C. elegans NHXâ€2 influences nutrient uptake and insulin signaling. FASEB Journal, 2006, 20, A843.                                                                                                                                                                                                     | 0.5 | 1         |
| 80 | A T231E Mutant that Mimics Pathologic Phosphorylation of Tau in Alzheimer's disease Causes<br>Activation of the Mitochondrial Unfolded Protein Response in touch neurons. MicroPublication<br>Biology, 2020, 2020, .                                                                                   | 0.1 | 1         |
| 81 | Splice variation of the cytoplasmic Câ€ŧerminus of a C. elegans ClC channel alters functional properties and glutamate gate accessibility to extracellular ions. FASEB Journal, 2006, 20, .                                                                                                            | 0.5 | 0         |
| 82 | Calcineurin homologous protein is required for a protonâ€activated muscle contraction in<br>Caenorhabditis elegans. FASEB Journal, 2010, 24, 815.15.                                                                                                                                                   | 0.5 | 0         |
| 83 | Calciumâ€dependent regulation of proton signaling during a rhythmic behavior in C. elegans. FASEB<br>Journal, 2010, 24, 815.14.                                                                                                                                                                        | 0.5 | 0         |