
Kinya Otsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249268/publications.pdf Version: 2024-02-01

Κινιγλ Οτειι

#	Article	IF	CITATIONS
1	Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441, 101-105.	27.8	3,292
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature, 2005, 434, 652-658.	27.8	1,464
4	The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine, 2007, 13, 619-624.	30.7	1,378
5	Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature, 2012, 485, 251-255.	27.8	985
6	Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature, 2009, 461, 654-658.	27.8	949
7	Direct Association of the Gap Junction Protein Connexin-43 with ZO-1 in Cardiac Myocytes. Journal of Biological Chemistry, 1998, 273, 12725-12731.	3.4	464
8	Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy, 2010, 6, 600-606.	9.1	391
9	Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nature Communications, 2015, 6, 7527.	12.8	381
10	Involvement of Nuclear Factor-κB and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy. Circulation, 2002, 105, 509-515.	1.6	353
11	A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics, 1991, 11, 751-755.	2.9	347
12	Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. Journal of Clinical Investigation, 2010, 120, 254-265.	8.2	336
13	Mitochondrial Function, Biology, and Role in Disease. Circulation Research, 2016, 118, 1960-1991.	4.5	330
14	Exercise Provides Direct Biphasic Cardioprotection via Manganese Superoxide Dismutase Activation. Journal of Experimental Medicine, 1999, 189, 1699-1706.	8.5	320
15	Signaling Pathways and Genes that Inhibit Pathogen-Induced Macrophage Apoptosis— CREB and NF-κB as Key Regulators. Immunity, 2005, 23, 319-329.	14.3	289
16	Crosstalk Between Autophagy and Apoptosis in Heart Disease. Circulation Research, 2008, 103, 343-351.	4.5	279
17	The kinase p38α serves cell type–specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nature Immunology, 2008, 9, 1019-1027.	14.5	250
18	Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation, 2017, 136, 549-561.	1.6	225

#	Article	IF	CITATIONS
19	Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15883-15888.	7.1	222
20	p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload. Molecular and Cellular Biology, 2004, 24, 10611-10620.	2.3	212
21	Inflammation and metabolic cardiomyopathy. Cardiovascular Research, 2017, 113, 389-398.	3.8	201
22	Oxidative Stress Causes Heart Failure with Impaired Mitochondrial Respiration. Journal of Biological Chemistry, 2006, 281, 33789-33801.	3.4	197
23	Perilipin 5, a Lipid Droplet-binding Protein, Protects Heart from Oxidative Burden by Sequestering Fatty Acid from Excessive Oxidation. Journal of Biological Chemistry, 2012, 287, 23852-23863.	3.4	190
24	MicroRNA-451 Exacerbates Lipotoxicity in Cardiac Myocytes and High-Fat Diet-Induced Cardiac Hypertrophy in Mice Through Suppression of the LKB1/AMPK Pathway. Circulation Research, 2015, 116, 279-288.	4.5	185
25	Involvement of Reactive Oxygen Species-mediated NF- κ B Activation in TNF- α -induced Cardiomyocyte Hypertrophy. Journal of Molecular and Cellular Cardiology, 2002, 34, 233-240.	1.9	178
26	Polymorphisms and deduced amino acid substitutions in the coding sequence of the ryanodine receptor (RYR1) gene in individuals with malignant hyperthermia. Genomics, 1992, 13, 1247-1254.	2.9	163
27	Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 2004, 114, 937-943.	8.2	159
28	Cosegregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross families. Genomics, 1991, 11, 744-750.	2.9	147
29	The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. Journal of the American College of Cardiology, 2002, 39, 907-912.	2.8	135
30	Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nature Medicine, 2012, 18, 1208-1216.	30.7	133
31	Intercellular Calcium Signaling via Gap Junction in Connexin-43-transfected Cells. Journal of Biological Chemistry, 1998, 273, 1519-1528.	3.4	108
32	Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 2004, 114, 937-943.	8.2	107
33	Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochemical Journal, 2018, 475, 839-852.	3.7	101
34	Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9199-9204.	7.1	99
35	Signaling via the kinase p38α programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nature Immunology, 2012, 13, 152-161.	14.5	93
36	Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nature Communications, 2019, 10, 2824.	12.8	93

Κινγά Οτςυ

#	Article	IF	CITATIONS
37	Chromosome Mapping of Five Human Cardiac and Skeletal Muscle Sarcoplasmic Reticulum Protein Genes. Genomics, 1993, 17, 507-509.	2.9	92
38	p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress. Cell Stem Cell, 2016, 19, 192-204.	11.1	92
39	Refinement of diagnostic assays for a probable causal mutation for porcine and human malignant hyperthermia. Genomics, 1992, 13, 835-837.	2.9	88
40	Relationship between effects of statins, aspirin and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis, 2003, 169, 155-158.	0.8	84
41	Functional Role of c-Src in Gap Junctions of the Cardiomyopathic Heart. Circulation Research, 1999, 85, 672-681.	4.5	81
42	Autophagy during cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2016, 95, 11-18.	1.9	81
43	Thyroid Hormone Enhances Ca2+ Pumping Activity of the Cardiac Sarcoplasmic Reticulum by Increasing Ca2+ ATPase and Decreasing Phospholamban Expression. Journal of Molecular and Cellular Cardiology, 1994, 26, 1145-1154.	1.9	80
44	Calcineurin Inhibitor Attenuates Left Ventricular Hypertrophy, Leading to Prevention of Heart Failure in Hypertensive Rats. Circulation, 2000, 102, 2269-2275.	1.6	78
45	A Mammalian Mitophagy Receptor, Bcl2-L-13, Recruits the ULK1 Complex to Induce Mitophagy. Cell Reports, 2019, 26, 338-345.e6.	6.4	78
46	Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology, 2010, 20, 1217-1226.	2.5	73
47	The importance of manganese superoxide dismutase in delayed preconditioning Involvement of reactive oxygen species and cytokines. Cardiovascular Research, 2002, 55, 495-505.	3.8	71
48	BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32. Autophagy, 2015, 11, 1932-1933.	9.1	71
49	HSP70 Binds to the Fast-twitch Skeletal Muscle Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA1a) and Prevents Thermal Inactivation. Journal of Biological Chemistry, 2004, 279, 52382-52389.	3.4	69
50	Disruption of a single copy of the p38α MAP kinase gene leads to cardioprotection against ischemia–reperfusion. Biochemical and Biophysical Research Communications, 2003, 302, 56-60.	2.1	67
51	CaMKII activates ASK1 and NF-κB to induce cardiomyocyte hypertrophy. Biochemical and Biophysical Research Communications, 2005, 327, 136-142.	2.1	67
52	Macromolecular Degradation Systems and Cardiovascular Aging. Circulation Research, 2016, 118, 1577-1592.	4.5	67
53	The Antioxidant Edaravone Attenuates Pressure Overload–Induced Left Ventricular Hypertrophy. Hypertension, 2005, 45, 921-926.	2.7	66
54	The Small GTP-binding Protein Rac1 Induces Cardiac Myocyte Hypertrophy through the Activation of Apoptosis Signal-regulating Kinase 1 and Nuclear Factor-κB. Journal of Biological Chemistry, 2003, 278, 20770-20777.	3.4	64

#	Article	IF	CITATIONS
55	The involvement of cytokines in the second window of ischaemic preconditioning. British Journal of Pharmacology, 2000, 131, 415-422.	5.4	63
56	Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats. Journal of the American College of Cardiology, 2002, 40, 826-831.	2.8	62
57	Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. ELife, 2021, 10, .	6.0	60
58	Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling. Journal of Clinical Investigation, 2007, 117, 1771-1781.	8.2	60
59	The lήB Kinase β/Nuclear Factor ήB Signaling Pathway Protects the Heart From Hemodynamic Stress Mediated by the Regulation of Manganese Superoxide Dismutase Expression. Circulation Research, 2009, 105, 70-79.	4.5	59
60	Receptor-mediated mitophagy. Journal of Molecular and Cellular Cardiology, 2016, 95, 50-56.	1.9	59
61	Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochemical and Biophysical Research Communications, 2005, 333, 562-567.	2.1	58
62	Cardiacâ€specific overexpression of a high Ca2+affinity mutant of SERCA2a attenuatesin vivopressure overload cardiac hypertrophy. FASEB Journal, 2003, 17, 61-63.	0.5	57
63	Regulation of Sarco(endo)plasmic Reticulum Ca2+ Adenosine Triphosphatase by Phospholamban and Sarcolipin Implication for Cardiac Hypertrophy and Failure. Trends in Cardiovascular Medicine, 2003, 13, 152-157.	4.9	55
64	Apoptosis Signal-Regulating Kinase 1/p38 Signaling Pathway Negatively Regulates Physiological Hypertrophy. Circulation, 2008, 117, 545-552.	1.6	52
65	Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. European Journal of Clinical Pharmacology, 2009, 65, 1097-1103.	1.9	51
66	Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2009, 46, 59-66.	1.9	51
67	Role of Autophagy in Aging. Journal of Cardiovascular Pharmacology, 2012, 60, 242-247.	1.9	51
68	Impact of Smoking Status on Long-Term Mortality in Patients With Acute Myocardial Infarction. Circulation Journal, 2005, 69, 7-12.	1.6	50
69	Autophagy-mediated degradation is necessary for regression of cardiac hypertrophy during ventricular unloading. Biochemical and Biophysical Research Communications, 2013, 441, 787-792.	2.1	50
70	P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Human Molecular Genetics, 2014, 23, 5452-5463.	2.9	49
71	The role of autophagic degradation in the heart. Journal of Molecular and Cellular Cardiology, 2015, 78, 73-79.	1.9	49
72	mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy. PLoS ONE, 2016, 11, e0152628.	2.5	49

#	Article	IF	CITATIONS
73	Calpain Protects the Heart from Hemodynamic Stress. Journal of Biological Chemistry, 2011, 286, 32170-32177.	3.4	48
74	Endogenous Ghrelin Attenuates Pressure Overload–Induced Cardiac Hypertrophy via a Cholinergic Anti-Inflammatory Pathway. Hypertension, 2015, 65, 1238-1244.	2.7	48
75	Ataxia telangiectasia mutated in cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity. Cardiovascular Research, 2016, 110, 85-95.	3.8	48
76	Ca2+-sensitive tyrosine kinase Pyk2/CAK \$beta;-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy. Journal of Molecular and Cellular Cardiology, 2004, 36, 799-807.	1.9	47
77	Sexâ€specific control of central nervous system autoimmunity by p38 mitogenâ€activated protein kinase signaling in myeloid cells. Annals of Neurology, 2014, 75, 50-66.	5.3	47
78	Intracellular Calcium Level Required for Calpain Activation in a Single Myocardial Cell. Journal of Molecular and Cellular Cardiology, 2001, 33, 1133-1142.	1.9	45
79	Presenilin 2 regulates the systolic function of heart by modulating Ca 2+ signaling. FASEB Journal, 2005, 19, 2069-2071.	0.5	44
80	Rheb (Ras Homologue Enriched in Brain)-dependent Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Becomes Indispensable for Cardiac Hypertrophic Growth after Early Postnatal Period. Journal of Biological Chemistry, 2013, 288, 10176-10187.	3.4	44
81	Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation, 2016, 134, 817-832.	1.6	43
82	Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1485-H1497.	3.2	38
83	Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovascular Research, 2015, 107, 420-430.	3.8	37
84	Involvement of p38 in Age-Related Decline in Adult Neurogenesis viaÂModulation of Wnt Signaling. Stem Cell Reports, 2019, 12, 1313-1328.	4.8	37
85	Progression of Heart Failure Was Suppressed by Inhibition of Apoptosis Signal-Regulating Kinase 1 Via Transcoronary Gene Transfer. Journal of the American College of Cardiology, 2007, 50, 453-462.	2.8	35
86	FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. Journal of Molecular and Cellular Cardiology, 2018, 114, 93-104.	1.9	35
87	Impact of atherosclerosis-related gene polymorphisms on mortality and recurrent events after myocardial infarction. Atherosclerosis, 2006, 185, 400-405.	0.8	33
88	Reduction in Hemoglobin–Oxygen Affinity Results in the Improvement of Exercise Capacity in Mice With Chronic Heart Failure. Journal of the American College of Cardiology, 2008, 52, 779-786.	2.8	31
89	Acrolein, an Environmental Toxin, Induces Cardiomyocyte Apoptosis via Elevated Intracellular Calcium and Free Radicals. Cell Biochemistry and Biophysics, 2011, 61, 131-136.	1.8	31
90	Translation of hemodynamic stress to sterile inflammation in the heart. Trends in Endocrinology and Metabolism, 2013, 24, 546-553.	7.1	31

Κινγά Οτςυ

#	Article	IF	CITATIONS
91	Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochemical and Biophysical Research Communications, 2019, 515, 442-447.	2.1	30
92	The Role of Apoptosis Signal-Regulating Kinase 1 in Cardiomyocyte Apoptosis. Antioxidants and Redox Signaling, 2006, 8, 1729-1736.	5.4	29
93	Platelet-Specific p38α Deficiency Improved Cardiac Function After Myocardial Infarction in MiceHighlights. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e185-e196.	2.4	29
94	Cooperation between proteolytic systems in cardiomyocyte recycling. Cardiovascular Research, 2012, 96, 46-52.	3.8	27
95	Degradation systems in heart failure. Journal of Molecular and Cellular Cardiology, 2015, 84, 212-222.	1.9	27
96	Involvement of Cytokines in the Mechanism of Whole-Body Hyperthermia-Induced Cardioprotection. Circulation, 2000, 102, 452-457.	1.6	26
97	Pressure Overload Induces Cardiac Dysfunction and Dilation in Signal Transducer and Activator of Transcription 6–Deficient Mice. Circulation, 2004, 110, 2631-2637.	1.6	26
98	Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12313-E12322.	7.1	26
99	Cytokine mRNA Degradation in Cardiomyocytes Restrains Sterile Inflammation in Pressure-Overloaded Hearts. Circulation, 2020, 141, 667-677.	1.6	26
100	Administration of a TLR9 Inhibitor Attenuates the Development and Progression of Heart Failure in Mice. JACC Basic To Translational Science, 2019, 4, 348-363.	4.1	25
101	Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy. Scientific Reports, 2018, 8, 9037.	3.3	23
102	Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. Journal of Biological Chemistry, 2017, 292, 1762-1772.	3.4	22
103	Ischemic or Nonischemic Functional Mitral Regurgitation and Outcomes in Patients With Acute Decompensated Heart Failure With Preserved or Reduced Ejection Fraction. American Journal of Cardiology, 2017, 120, 809-816.	1.6	20
104	p38α signaling in Langerhans cells promotes the development of IL-17–producing T cells and psoriasiform skin inflammation. Science Signaling, 2018, 11, .	3.6	20
105	Cell type-specific targeting dissociates the therapeutic from the adverse effects of protein kinase inhibition in allergic skin disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9089-9094.	7.1	19
106	Sterile Inflammation and Degradation Systems in Heart Failure. Circulation Journal, 2017, 81, 622-628.	1.6	18
107	Monophosphoryl lipid A provides biphasic cardioprotection against ischaemia-reperfusion injury in rat hearts. British Journal of Pharmacology, 1999, 128, 412-418.	5.4	15
108	Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. Journal of Molecular and Cellular Cardiology, 2010, 48, 302-309.	1.9	14

#	Article	IF	CITATIONS
109	Tuning of Protein Kinase Circuitry by p38α Is Vital for Epithelial Tissue Homeostasis. Journal of Biological Chemistry, 2013, 288, 23788-23797.	3.4	14
110	Tissue-Specific Regulation of p38α-Mediated Inflammation in Con A–Induced Acute Liver Damage. Journal of Immunology, 2015, 194, 4759-4766.	0.8	13
111	CXCR7 ameliorates myocardial infarction as a β-arrestin-biased receptor. Scientific Reports, 2021, 11, 3426.	3.3	13
112	NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6C ^{hi} monocytes in pressure-overloaded hearts. Science Signaling, 2021, 14, eabe4932.	3.6	13
113	The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. , 2022, 19, 805-819.		12
114	Direct cardiotoxic effects of cocaine and cocaethylene on isolated cardiomyocytes. International Journal of Cardiology, 1996, 53, 15-23.	1.7	11
115	Cloning and Characterization of the 5'-Upstream Regulatory Region of the Ca2+-Release Channel Gene of Cardiac Sarcoplasmic Reticulum. FEBS Journal, 1996, 240, 408-415.	0.2	11
116	Involvement of NF-Y in transcriptional regulation of the phospholamban gene. FEBS Journal, 1998, 258, 744-751.	0.2	8
117	FR167653, a Cytokine-suppressive Agent, Reduces Myocardial Ischemia-reperfusion Injury in Rats. Cytokines, Cellular & Molecular Therapy, 2000, 6, 165-170.	0.3	8
118	Usefulness of High-Resolution Real-Time Three-Dimensional Echocardiography to Visualize the Left Ventricular Endocardial Surface in Myocardial Infarction. American Journal of Cardiology, 2006, 97, 1578-1581.	1.6	7
119	Genetic modulation of the SERCA activity does not affect the Ca2+ leak from the cardiac sarcoplasmic reticulum. Cell Calcium, 2014, 55, 17-23.	2.4	6
120	NRSF- <i>GNAO1</i> Pathway Contributes to the Regulation of Cardiac Ca ²⁺ Homeostasis. Circulation Research, 2022, 130, 234-248.	4.5	6
121	p38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts. Journal of Biological Chemistry, 2021, 296, 100563.	3.4	5
122	Single-strand conformation polymorphism analysis on the δ-sarcoglycan gene in Japanese patients with hypertrophic cardiomyopathy. American Journal of Cardiology, 2000, 85, 1315-1318.	1.6	3
123	p38α Deficiency in T Cells Ameliorates Diet-Induced Obesity, Insulin Resistance, and Adipose Tissue Senescence. Diabetes, 2022, 71, 1205-1217.	0.6	3
124	Calpain-mediated proteolytic production of free amino acids in vascular endothelial cells augments obesity-induced hepatic steatosis. Journal of Biological Chemistry, 2022, , 101953.	3.4	3
125	Mitochondria and sterile inflammation in the heart. Current Opinion in Physiology, 2018, 1, 68-74.	1.8	2
126	Rubicon-regulated beta-1 adrenergic receptor recycling protects the heart from pressure overload. Scientific Reports, 2022, 12, 41.	3.3	2

Kinya Otsu

#	Article	IF	CITATIONS
127	Novel In Vivo Tool to Evaluate Autophagic Activity in the Heart. Circulation Journal, 2010, 74, 49-50.	1.6	1
128	The Novel Mitophagic Receptor Protein, Bcl2-like Protein 13: New Insights for the Molecular Mechanisms of the Pathogenesis of Heart Disease. Journal of Cardiac Failure, 2015, 21, S147.	1.7	1
129	"Autophagy in the Heartâ€: Journal of Molecular and Cellular Cardiology, 2016, 95, 1.	1.9	1
130	Roles of Mitogen-activated Protein Kinase Signaling Pathway in Cardiac Remodeling. Journal of Cardiac Failure, 2005, 11, S250.	1.7	0
131	Chronic Inhibition of Apoptosis Signal-regulating Kinase 1 (ASK-1) by Myocardial Gene Transfer Suppressed Progression of Heart Failure in Genetic Cardiomyopathy. Journal of Cardiac Failure, 2005, 11, S279.	1.7	0
132	Reduction in Hemoglobin-Oxygen Affinity Results in the Improvement of Exercise Capacity in Mice with Chronic Heart Failure. Journal of Molecular and Cellular Cardiology, 2008, 45, S8-S9.	1.9	0
133	Cardiac Steroidogenesis and Glucocorticoid Contribute to Augmentation of Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 2008, 45, S16-S17.	1.9	0
134	Activated cardiac steroidogenesis and increased glucocorticoid promote cardiac hypertrophy. Journal of Cardiac Failure, 2008, 14, S153.	1.7	0