Nullin Divecha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2248571/publications.pdf

Version: 2024-02-01

91 papers 8,292 citations

57758 44 h-index 88 g-index

93 all docs 93 docs citations 93 times ranked 8524 citing authors

#	Article	IF	CITATIONS
1	Mammalian SIRT1 Represses Forkhead Transcription Factors. Cell, 2004, 116, 551-563.	28.9	1,284
2	DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell, 1995, 82, 849-856.	28.9	712
3	Phospholipid signaling. Cell, 1995, 80, 269-278.	28.9	629
4	The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor. Cell, 2003, 114, 99-111.	28.9	467
5	PIP5K-driven PtdIns(4,5) <i>P</i> 2 synthesis: regulation and cellular functions. Journal of Cell Science, 2009, 122, 3837-3850.	2.0	265
6	Visualization of PtdIns3Pdynamics in living plant cells. Plant Journal, 2006, 47, 687-700.	5.7	245
7	Inositides and the nucleus and inositides in the nucleus. Cell, 1993, 74, 405-407.	28.9	227
8	Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Current Biology, 1999, 9, 55-58.	3.9	203
9	Nuclear PtdIns5P as a Transducer of Stress Signaling: An In Vivo Role for PIP4Kbeta. Molecular Cell, 2006, 23, 685-695.	9.7	194
10	Evaluation and Optimization of ZIC-HILIC-RP as an Alternative MudPIT Strategy. Journal of Proteome Research, 2007, 6, 937-946.	3.7	182
11	Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochemical Journal, 2001, 357, 905-910.	3.7	143
12	The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGFâ€Î²/Smad signalling. Genes To Cells, 2002, 7, 321-331.	1.2	137
13	Hyperosmotic stress induces rapid synthesis of phosphatidyl- D -inositol 3,5-bisphosphate in plant cells. Planta, 1999, 208, 294-298.	3.2	132
14	Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature, 2012, 492, 276-279.	27.8	131
15	Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochemical Journal, 1997, 327, 569-576.	3.7	130
16	Class II Phosphoinositide 3-Kinase Regulates Exocytosis of Insulin Granules in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2011, 286, 4216-4225.	3.4	130
17	Long-term starvation and ageing induce AGE-1/PI 3-kinase-dependent translocation of DAF-16/FOXO to the cytoplasm. BMC Biology, 2006, 4, 1.	3 . 8	118
18	Nuclear targeting of the \hat{I}^2 isoform of Type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its \hat{I} ±-helix 7. Biochemical Journal, 2000, 346, 587-591.	3.7	113

#	Article	IF	Citations
19	Accessibility of Different Histone H3-Binding Domains of UHRF1 Is Allosterically Regulated by Phosphatidylinositol 5-Phosphate. Molecular Cell, 2014, 54, 905-919.	9.7	108
20	Identification of Nuclear Phosphatidylinositol 4,5-Bisphosphate-Interacting Proteins by Neomycin Extraction. Molecular and Cellular Proteomics, 2011, 10, S1-S15.	3.8	107
21	Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochemical Journal, 2001, 360, 491-498.	3.7	106
22	PIP4Kβ interacts with and modulates nuclear localization of the high-activity PtdIns5 <i>P</i> -4-kinase isoform PIP4Kα. Biochemical Journal, 2010, 430, 223-235.	3.7	99
23	The C-terminal Domain of Rac1 Contains Two Motifs That Control Targeting and Signaling Specificity. Journal of Biological Chemistry, 2003, 278, 39166-39175.	3.4	98
24	Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochemical Journal, 2001, 357, 905.	3.7	89
25	An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends in Pharmacological Sciences, 2005, 26, 654-660.	8.7	86
26	Nuclei contain two differentially regulated pools of diacylglycerol. Current Biology, 1999, 9, 437-440.	3.9	84
27	Nuclear phosphoinositides and their impact on nuclear functions. FEBS Journal, 2013, 280, 6295-6310.	4.7	82
28	Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (Ptdlns5P), and its accumulation upon osmotic stress. Biochemical Journal, 2001, 360, 491.	3.7	81
29	A Casein Kinase 1 and PAR Proteins Regulate Asymmetry of a PIP2 Synthesis Enzyme for Asymmetric Spindle Positioning. Developmental Cell, 2008, 15, 198-208.	7.0	76
30	A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival. Oncogene, 2015, 34, 1253-1262.	5.9	76
31	Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate. Journal of Cell Biology, 2007, 177, 881-891.	5.2	74
32	Translocation of Diacylglycerol Kinase Î, from Cytosol to Plasma Membrane in Response to Activation of G Protein-coupled Receptors and Protein Kinase C. Journal of Biological Chemistry, 2005, 280, 9870-9878.	3.4	70
33	Impaired neural development in a zebrafish model for Lowe syndrome. Human Molecular Genetics, 2012, 21, 1744-1759.	2.9	69
34	Phospholipids in the nucleus—metabolism and possible functions. Seminars in Cell Biology, 1992, 3, 225-235.	3.4	68
35	Essential Role of Type Iα Phosphatidylinositol 4-Phosphate 5-Kinase in Neurite Remodeling. Current Biology, 2002, 12, 241-245.	3.9	68
36	Linking lipids to chromatin. Current Opinion in Genetics and Development, 2004, 14, 196-202.	3.3	68

#	Article	IF	CITATIONS
37	Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy. Molecular Cell, 2018, 70, 531-544.e9.	9.7	68
38	The Basal Transcription Complex Component TAF3 Transduces Changes in Nuclear Phosphoinositides into Transcriptional Output. Molecular Cell, 2015, 58, 453-467.	9.7	67
39	Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) regulates TOR signaling and cell growth during <i>Drosophila</i> development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5963-5968.	7.1	66
40	PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 898-910.	2.4	58
41	Phosphatidylinositol 5-Phosphate Links Dehydration Stress to the Activity of ARABIDOPSIS TRITHORAX-LIKE Factor ATX1. PLoS ONE, 2010, 5, e13396.	2.5	55
42	PtdIns5 P is an oxidative stressâ€induced second messenger that regulates PKB activation. FASEB Journal, 2013, 27, 1644-1656.	0.5	52
43	The Retinoblastoma Family Proteins Bind to and Activate Diacylglycerol Kinasel¶. Journal of Biological Chemistry, 2006, 281, 858-866.	3.4	51
44	Regulation of type Ilî \pm phosphatidylinositol phosphate kinase localisation by the protein kinase CK2. Current Biology, 1999, 9, 983-S1.	3.9	48
45	A Role for PtdIns(4,5)P2 and PIP5Kα in Regulating Stress-Induced Apoptosis. Current Biology, 2006, 16, 1850-1856.	3.9	44
46	Phosphoinositide signalling in the nucleus. Advances in Enzyme Regulation, 2011, 51, 91-99.	2.6	42
47	Type I PIPkinases Interact with and Are Regulated by the Retinoblastoma Susceptibility Gene Product—pRB. Current Biology, 2002, 12, 582-587.	3.9	41
48	Rac controls PIP5K localisation and PtdIns(4,5) <i>P</i> li>2 synthesis, which modulates vinculin localisation and neurite dynamics. Journal of Cell Science, 2010, 123, 3535-3546.	2.0	41
49	Low PIP4K2B Expression in Human Breast Tumors Correlates with Reduced Patient Survival: A Role for PIP4K2B in the Regulation of E-Cadherin Expression. Cancer Research, 2013, 73, 6913-6925.	0.9	41
50	Regulation of Phosphatidylinositol-5-Phosphate Signaling by Pin1 Determines Sensitivity to Oxidative Stress. Science Signaling, 2012, 5, ra86.	3.6	38
51	Structure–activity relationship of diacylglycerol kinase Î, Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1636, 169-174.	2.4	35
52	PtdIns5P and Pin1 in oxidative stress signaling. Advances in Biological Regulation, 2013, 53, 179-189.	2.3	35
53	Overexpression of PPK-1, the Caenorhabditis elegans Type I PIP kinase, inhibits growth cone collapse in the developing nervous system and causes axonal degeneration in adults. Developmental Biology, 2008, 313, 384-397.	2.0	34
54	Nuclear Phosphoinositides: Location, Regulation and Function. Sub-Cellular Biochemistry, 2012, 59, 335-361.	2.4	34

#	Article	IF	CITATIONS
55	Nuclear targeting of the \hat{l}^2 isoform of Type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its \hat{l} ±-helix 7. Biochemical Journal, 2000, 346, 587.	3.7	33
56	Regulation of PtdIns4P 5-kinase C by thrombin-stimulated changes in its phosphorylation state in human platelets. Biochemical Journal, 1998, 329, 115-119.	3.7	31
57	Measurement of phosphoinositides in the zebrafish Danio rerio. Nature Protocols, 2013, 8, 1058-1072.	12.0	28
58	Phosphatidylinositol 5 Phosphate (PI5P): From Behind the Scenes to the Front (Nuclear) Stage. International Journal of Molecular Sciences, 2019, 20, 2080.	4.1	28
59	Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. Journal of Lipid Research, 2007, 48, 726-732.	4.2	27
60	The hexosamine biosynthesis pathway and Oâ€Glc <scp>NA</scp> cylation maintain insulinâ€stimulated <scp>PI</scp> 3Kâ€ <scp>PKB</scp> phosphorylation and tumour cell growth after shortâ€term glucose deprivation. FEBS Journal, 2014, 281, 3591-3608.	4.7	26
61	7 DNA-dependent protein kinase and related proteins. , 1999, , 91-104.		23
62	Intravital imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnology, 2007, 7, 2.	3.3	23
63	Divergent functions of the myotubularin (MTM) homologs AtMTM1 and AtMTM2 in <i>Arabidopsis thaliana</i> : evolution of the plant MTM family. Plant Journal, 2012, 70, 866-878.	5.7	20
64	PIP4Ks impact on PI3K, FOXP3, and UHRF1 signaling and modulate human regulatory T cell proliferation and immunosuppressive activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	20
65	Molecular species analysis of 1,2-diacylglycerols and phosphatidic acid formed during bombesin stimulation of Swiss 3T3 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1093, 184-188.	4.1	18
66	Phospholipases in the nucleus. Seminars in Cell and Developmental Biology, 1997, 8, 323-331.	5.0	17
67	Protein kinase C inhibits binding of diacylglycerol kinase-ζ to the retinoblastoma protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 352-357.	4.1	17
68	Role of phosphatidylinositol 5-phosphate 4-kinase \hat{l}_{\pm} in zebrafish development. International Journal of Biochemistry and Cell Biology, 2013, 45, 1293-1301.	2.8	17
69	Cloning and characterisation of two new cDNAs encoding murine triple LIM domains. Gene, 1995, 156, 283-286.	2.2	16
70	Marked for nuclear export?. Nature, 1998, 394, 619-620.	27.8	15
71	T lymphocyte nuclear diacylglycerol is derived from both de novo synthesis and phosphoinositide hydrolysis. International Journal of Biochemistry and Cell Biology, 2002, 34, 158-168.	2.8	14
72	Lipid Kinases: Charging PtdIns(4,5)P2 Synthesis. Current Biology, 2010, 20, R154-R157.	3.9	14

#	Article	IF	CITATIONS
73	Collaboration of AMPK and PKC to induce phosphorylation of Ser413 on PIP5K1B resulting in decreased kinase activity and reduced PtdIns $(4,5)$ <i>>P</i> >2 synthesis in response to oxidative stress and energy restriction. Biochemical Journal, 2013, 455, 347-358.	3.7	10
74	Basic proline-rich proteins of murine parotid glands. Induction of mRNA by isoprenaline and post-secretion processing. FEBS Journal, 1989, 181, 371-379.	0.2	9
75	Phosphoinositide phosphatase SHIP-1 regulates apoptosis induced by edelfosine, Fas ligation and DNA damage in mouse lymphoma cells. Biochemical Journal, 2011, 440, 127-135.	3.7	9
76	Proteomic Analysis of Azacitidine-Induced Degradation Profiles Identifies Multiple Chromatin and Epigenetic Regulators Including Uhrf1 and Dnmt1 as Sensitive to Azacitidine. Journal of Proteome Research, 2019, 18, 1032-1042.	3.7	9
77	Diacylglycerol kinase Î, counteracts protein kinase C-mediated inactivation of the EGF receptor. International Journal of Biochemistry and Cell Biology, 2012, 44, 1791-1799.	2.8	8
78	Methods for the Determination of the Mass of Nuclear PtdIns4P, PtdIns5P, and PtdIns(4,5)P 2. Methods in Molecular Biology, 2009, 462, 1-14.	0.9	8
79	Unclear or nuclear: another role for the phosphatidylinositol cycle?. Biochemical Society Transactions, 1993, 21, 877-878.	3.4	7
80	Of yeast and men. EMBO Reports, 2004, 5, 865-866.	4.5	6
81	Is there a role for diacylglycerol kinase- $\hat{l}\P$ in cell cycle regulation?. Advances in Enzyme Regulation, 2008, 48, 31-39.	2.6	5
82	Exploring the controversial role of PI3K signalling in CD4+ regulatory T (T-Reg) cells. Advances in Biological Regulation, 2020, 76, 100722.	2.3	5
83	"Modulating Phosphoinositide Profiles as a Roadmap for Treatment in Acute Myeloid Leukemia― Frontiers in Oncology, 2021, 11, 678824.	2.8	5
84	Identification and optimization of a novel series of selective PIP5K inhibitors. Bioorganic and Medicinal Chemistry, 2022, 54, 116557.	3.0	5
85	Investigation into the mechanism regulating MRP localization. Experimental Cell Research, 2008, 314, 330-341.	2.6	4
86	Deep proteomic analysis of Dnmt1 mutant/hypomorphic colorectal cancer cells reveals dysregulation of epithelial–mesenchymal transition and subcellular re-localization of Beta-Catenin. Epigenetics, 2020, 15, 107-121.	2.7	4
87	PIP4K2B: Coupling GTP Sensing to PtdIns5P Levels to Regulate Tumorigenesis. Trends in Biochemical Sciences, 2016, 41, 473-475.	7.5	3
88	Phosphoinositides in the nucleus and myogenic differentiation: how a nuclear turtle with a PHD builds muscle. Biochemical Society Transactions, 2016, 44, 299-306.	3.4	3
89	Methods to Assess Changes in the Pattern of Nuclear Phosphoinositides. Methods in Molecular Biology, 2010, 645, 165-177.	0.9	2
90	Assaying Endogenous Phosphatidylinositol-4-Phosphate 5-Kinase (PIP5K) Activities. Methods in Molecular Biology, 2009, 462, 1-12.	0.9	0

#	Article	IF	CITATIONS
91	Proteomic characterization of GSK3 \hat{l}^2 knockout shows altered cell adhesion and metabolic pathway utilisation in colorectal cancer cells. PLoS ONE, 2021, 16, e0246707.	2.5	0