
Frank Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2248362/publications.pdf Version: 2024-02-01

FDANK STEIN

#	Article	IF	CITATIONS
1	The functional landscape of the human phosphoproteome. Nature Biotechnology, 2020, 38, 365-373.	9.4	273
2	The Al-Rich Part of the Fe-Al Phase Diagram. Journal of Phase Equilibria and Diffusion, 2016, 37, 162-173.	0.5	194
3	Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56, 5321-5427.	1.7	186
4	Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell, 2018, 173, 1495-1507.e18.	13.5	183
5	Thermal proteome profiling for interrogating protein interactions. Molecular Systems Biology, 2020, 16, e9232.	3.2	150
6	Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nature Cell Biology, 2019, 21, 442-451.	4.6	146
7	Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nature Communications, 2018, 9, 4408.	5.8	138
8	Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. International Journal of Materials Research, 2007, 98, 580-588.	0.1	136
9	Thermal proteome profiling in bacteria: probing protein state <i>inÂvivo</i> . Molecular Systems Biology, 2018, 14, e8242.	3.2	130
10	Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proceedings of the United States of America, 2017, 114, 1566-1571.	3.3	100
11	Bifunctional Sphingosine for Cell-Based Analysis of Protein-Sphingolipid Interactions. ACS Chemical Biology, 2016, 11, 222-230.	1.6	99
12	Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy. Scientific Reports, 2017, 7, 2209.	1.6	71
13	Iron Aluminides. Annual Review of Materials Research, 2019, 49, 297-326.	4.3	71
14	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multiâ€enzyme complexes in <i>Escherichia coli</i> . EMBO Journal, 2020, 39, e102246.	3.5	69
15	Exclusive photorelease of signalling lipids at the plasma membrane. Nature Communications, 2015, 6, 10056.	5.8	67
16	A Scheil–Gulliver model dedicated to the solidification of steel. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48, 184-188.	0.7	60
17	The functional proteome landscape of Escherichia coli. Nature, 2020, 588, 473-478.	13.7	58
18	On the reaction scheme and liquidus surface in the ternary system Fe–Si–Ti. Intermetallics, 2008, 16, 273-282.	1.8	57

FRANK STEIN

#	Article	IF	CITATIONS
19	Thermodynamic description of the systems Co–Nb, Al–Nb and Co–Al–Nb. Journal of Alloys and Compounds, 2015, 637, 361-375.	2.8	55
20	Structural analysis of human ARS2 asÂa platform for co-transcriptional RNA sorting. Nature Communications, 2018, 9, 1701.	5.8	53
21	Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature, 2022, 609, 144-150.	13.7	52
22	Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 73-82.	3.6	47
23	Elemental partitioning and site-occupancy in γ/γ′ forming Co-Ti-Mo and Co-Ti-Cr alloys. Scripta Materialia, 2018, 154, 159-162.	2.6	44
24	Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice. Nature Communications, 2022, 13, 680.	5.8	41
25	Plasticity of nuclear and cytoplasmic stress responses of RNA-binding proteins. Nucleic Acids Research, 2020, 48, 4725-4740.	6.5	40
26	Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host and Microbe, 2021, 29, 1316-1332.e12.	5.1	39
27	The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nature Communications, 2019, 10, 3626.	5.8	36
28	Effect of Oxygen on Highâ€ŧemperature Phase Equilibria in Ternary Tiâ€Alâ€Nb Alloys. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1151-1156.	0.6	26
29	Investigation of the ε phase in the Fe–Al system byÂhigh-temperature neutron diffraction. Applied Physics A: Materials Science and Processing, 2010, 99, 607-611.	1.1	25
30	TRRAP is essential for regulating the accumulation of mutant and wild-type p53 in lymphoma. Blood, 2018, 131, 2789-2802.	0.6	25
31	Aggregation and disaggregation features of the human proteome. Molecular Systems Biology, 2020, 16, e9500.	3.2	25
32	High-throughput functional characterization of protein phosphorylation sites in yeast. Nature Biotechnology, 2022, 40, 382-390.	9.4	24
33	Preparation, phase stability and structure of the C36 Laves phase Nb1–xCo2+x. Zeitschrift Fur Kristallographie - Crystalline Materials, 2006, 221, .	0.4	23
34	An integrated multiomic and quantitative label-free microscopy-based approach to study pro-fibrotic signalling in <i>ex vivo</i> human precision-cut lung slices. European Respiratory Journal, 2021, 58, 2000221.	3.1	21
35	Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Reports, 2021, 35, 109100.	2.9	19
36	Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO Journal, 2021, 40, e107913.	3.5	18

Frank Stein

#	Article	IF	CITATIONS
37	SARSâ€CoVâ€2 infection remodels the host protein thermal stability landscape. Molecular Systems Biology, 2021, 17, e10188.	3.2	17
38	A Bifunctional Noncanonical Amino Acid: Synthesis, Expression, and Residue-Specific Proteome-wide Incorporation. Biochemistry, 2018, 57, 4747-4752.	1.2	16
39	ACLY is the novel signaling target of PIP2/PIP3 and Lyn in acute myeloid leukemia. Heliyon, 2020, 6, e03910.	1.4	15
40	Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo ₂ Laves phase polytypes studied by nanoindentation. Journal of Materials Research, 2020, 35, 185-195.	1.2	15
41	Thermodynamic Assessment of the Fe-Al-Nb System with Updated Fe-Nb Description. Journal of Phase Equilibria and Diffusion, 2017, 38, 771-787.	0.5	13
42	The Ternary System Nickel/Silicon/Titanium RevisitedÂÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 982-990.	0.6	12
43	Microstructures of Ternary Eutectic Refractory Me-Si-B (Me = Mo, V) Alloy Systems. Materials Science Forum, 0, 941, 827-832.	0.3	12
44	The effect of the ternary elements B, Ti, Cr, Cu, and Mo on fully lamellar FeAlÂ+ÂFeAl2 alloys. Journal of Alloys and Compounds, 2017, 722, 219-228.	2.8	11
45	Thermodynamic assessment of the Cr–Al–Nb system. International Journal of Materials Research, 2010, 101, 1369-1375.	0.1	10
46	The Co–Ti system revisited: About the cubic-to-hexagonal Laves phase transformation and other controversial features of the phase diagram. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101681.	0.7	10
47	Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS ONE, 2019, 14, e0211180.	1.1	10
48	CaMKK2 facilitates Golgi-associated vesicle trafficking to sustain cancer cell proliferation. Cell Death and Disease, 2021, 12, 1040.	2.7	9
49	Compositional Dependence of the Compressive Yield Strength of Fe-Nb(-Al) and Co-Nb Laves Phases. Materials Research Society Symposia Proceedings, 2011, 1295, 311.	0.1	7
50	Development of new Fe–Al–Nb(–B) alloys for structural applications at high temperatures. MRS Advances, 2021, 6, 176-182.	0.5	7
51	Solid-Solid Phase Transformations and Their Kinetics in Ti-Al-Nb Alloys. Metals, 2021, 11, 1991.	1.0	7
52	Target-Activated Prodrugs (TAPs) for the Autoregulated Inhibition of MMP12. ACS Medicinal Chemistry Letters, 2012, 3, 653-657.	1.3	4
53	Constitution of the ternary system Co–Si–Ti. Intermetallics, 2013, 38, 92-101.	1.8	4
54	A single-cell model of PIP3 dynamics using chemical dimerization. Bioorganic and Medicinal Chemistry, 2015, 23, 2868-2876.	1.4	4

FRANK STEIN

#	Article	IF	CITATIONS
55	Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 752-762.	1.1	4
56	Creep strength of a binary Al ₆₂ Ti ₃₈ alloy. International Journal of Materials Research, 2010, 101, 676-679.	0.1	3
57	Microstructure Evolution of a New Precipitation-Strengthened Fe–Al–Ni–Ti Alloy down to Atomic Scale. Metals, 2022, 12, 906.	1.0	1
58	The Effect of Li on Intermetallic Fe-Al Alloys. Materials Research Society Symposia Proceedings, 2012, 1516, 263-268.	0.1	0