List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2247596/publications.pdf Version: 2024-02-01

SONIALAIN

#	Article	IF	CITATIONS
1	DHODH inhibition modulates glucose metabolism and circulating GDF15, and improves metabolic balance. IScience, 2021, 24, 102494.	4.1	11
2	Modulating pyrimidine ribonucleotide levels for the treatment of cancer. Cancer & Metabolism, 2020, 8, 12.	5.0	25
3	Optimization of Tetrahydroindazoles as Inhibitors of Human Dihydroorotate Dehydrogenase and Evaluation of Their Activity and In Vitro Metabolic Stability. Journal of Medicinal Chemistry, 2020, 63, 3915-3934.	6.4	15
4	Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology. Journal of Biological Chemistry, 2020, 295, 17935-17949.	3.4	8
5	Functional characterization of novel germline <i>TP53</i> variants in Swedish families. Clinical Genetics, 2019, 96, 216-225.	2.0	7
6	Small molecule activators of the p53 response. Journal of Molecular Cell Biology, 2019, 11, 245-254.	3.3	34
7	Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase. Cell Chemical Biology, 2018, 25, 309-317.e4.	5.2	25
8	A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage. Nature Communications, 2018, 9, 1107.	12.8	63
9	Mass Spectrometry Reveals the Direct Action of a Chemical Chaperone. Journal of Physical Chemistry Letters, 2018, 9, 4082-4086.	4.6	21
10	Autophagic flux blockage by accumulation of weakly basic tenovins leads to elimination of B-Raf mutant tumour cells that survive vemurafenib. PLoS ONE, 2018, 13, e0195956.	2.5	4
11	Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. Journal of Clinical Investigation, 2018, 128, 4115-4131.	8.2	35
12	cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response. Cell Cycle, 2016, 15, 1267-1275.	2.6	13
13	Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget, 2015, 6, 16488-16506.	1.8	30
14	Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nature Biotechnology, 2015, 33, 415-423.	17.5	237
15	SIRT1 Activation by a c-MYC Oncogenic Network Promotes the Maintenance and Drug Resistance of Human FLT3-ITD Acute Myeloid Leukemia Stem Cells. Cell Stem Cell, 2014, 15, 431-446.	11.1	187
16	Molecular mechanisms of nutlin-3 involve acetylation of p53, histones and heat shock proteins in acute myeloid leukemia. Molecular Cancer, 2014, 13, 116.	19.2	28
17	Upstream Targets in the p53 Pathway. , 2013, , 209-229.		0
18	Dysregulation of autophagy in chronic lymphocytic leukemia with the small-molecule Sirtuin inhibitor Tenovin-6. Scientific Reports, 2013, 3, 1275.	3.3	33

#	Article	IF	CITATIONS
19	Modulation of p53 C-Terminal Acetylation by mdm2, p14ARF, and Cytoplasmic SirT2. Molecular Cancer Therapeutics, 2013, 12, 471-480.	4.1	34
20	Tenovin-D3, a Novel Small-Molecule Inhibitor of Sirtuin SirT2, Increases p21 (<i>CDKN1A</i>) Expression in a p53-Independent Manner. Molecular Cancer Therapeutics, 2013, 12, 352-360.	4.1	38
21	Pharmacological Inhibition Of The SIRT1 Deacetylase With The Small Molecule Inhibitor Tenovin-6 Enhances Ablation Of FLT3-ITD+ LSC In Combination With TKI Treatment. Blood, 2013, 122, 2685-2685.	1.4	1
22	p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP. Cell Cycle, 2012, 11, 4563-4569.	2.6	19
23	An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells. Cell Cycle, 2012, 11, 1851-1861.	2.6	57
24	Discovery and Validation of SIRT2 Inhibitors Based on Tenovin-6: Use of a 1H-NMR Method to Assess Deacetylase Activity. Molecules, 2012, 17, 12206-12224.	3.8	8
25	Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins. Bioorganic and Medicinal Chemistry, 2012, 20, 1779-1793.	3.0	47
26	N1-Benzyl substituted cambinol analogues as isozyme selective inhibitors of the sirtuin family of protein deacetylases. MedChemComm, 2011, 2, 611.	3.4	16
27	Mechanism-specific signatures for small-molecule p53 activators. Cell Cycle, 2011, 10, 1590-1598.	2.6	46
28	Pharmacological manipulation of the cell cycle and metabolism to protect normal tissues against conventional anticancer drugs. Oncotarget, 2011, 2, 274-276.	1.8	20
29	Drug discovery in the p53 field. Seminars in Cancer Biology, 2010, 20, 1-2.	9.6	2
30	p53-based Cancer Therapy. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001222-a001222.	5.5	206
31	Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 266-284.	0.3	6
32	Evaluation of an Actinomycin D/VX-680 aurora kinase inhibitor combination in p53-based cyclotherapy. Oncotarget, 2010, 1, 639-650.	1.8	65
33	Evaluation of an Actinomycin D/VX-680 aurora kinase inhibitor combination in p53-based cyclotherapy. Oncotarget, 2010, 1, 639-50.	1.8	52
34	Leptomycin B induces apoptosis in cells containing the whole HPV 16 genome. International Journal of Oncology, 2009, 35, 649-56.	3.3	4
35	Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair, 2009, 8, 1215-1224.	2.8	130
36	Awakening guardian angels: drugging the p53 pathway. Nature Reviews Cancer, 2009, 9, 862-873.	28.4	805

#	Article	IF	CITATIONS
37	Novel Cambinol Analogs as Sirtuin Inhibitors: Synthesis, Biological Evaluation, and Rationalization of Activity. Journal of Medicinal Chemistry, 2009, 52, 2673-2682.	6.4	120
38	Chapter 5 Sirtuins and p53. Advances in Cancer Research, 2009, 102, 171-195.	5.0	68
39	Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator. Cancer Cell, 2008, 13, 454-463.	16.8	470
40	Characterization, chemical optimization and anti-tumor activity of a tubulin poison identified by a p53-based phenotypic screen. Cell Cycle, 2008, 7, 3417-3427.	2.6	14
41	If p53 can't do it, ask p73. Cell Cycle, 2008, 7, 3287-3291.	2.6	6
42	Novel p53-Based Therapies: Strategies and Future Prospects. , 2007, , 353-376.		1
43	Selective induction of apoptosis by leptomycin B in keratinocytes expressing HPV oncogenes. International Journal of Cancer, 2007, 120, 2317-2324.	5.1	26
44	231 INVITED Activation of p53 by small molecules from fish to man. European Journal of Cancer, Supplement, 2006, 4, 75.	2.2	0
45	Pilot screening programme for small molecule activators of p53. International Journal of Cancer, 2005, 115, 701-710.	5.1	45
46	Differences in the ubiquitination of p53 by Mdm2 and the HPV protein E6. FEBS Letters, 2003, 536, 220-224.	2.8	36
47	Oligomerization of the Human ARF Tumor Suppressor and Its Response to Oxidative Stress. Journal of Biological Chemistry, 2003, 278, 18720-18729.	3.4	30
48	Therapeutic exploitation of the p53 pathway. Trends in Molecular Medicine, 2002, 8, S38-S42.	6.7	112
49	Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene, 2001, 20, 4972-4983.	5.9	168
50	Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth. Journal of Biological Chemistry, 2001, 276, 19469-19482.	3.4	234
51	p53 is phosphorylated at the carboxyl terminus and promotes the differentiation of human HaCaT keratinocytes. Molecular Carcinogenesis, 2000, 29, 251-262.	2.7	17
52	Multiple C-Terminal Lysine Residues Target p53 for Ubiquitin-Proteasome-Mediated Degradation. Molecular and Cellular Biology, 2000, 20, 8458-8467.	2.3	337
53	Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene, 1999, 18, 7378-7386.	5.9	78
54	SUMO-1 modification activates the transcriptional response of p53. EMBO Journal, 1999, 18, 6455-6461.	7.8	602

#	Article	lF	CITATIONS
55	Characterization of the cyclin-dependent kinase inhibitory domain of the INK4 family as a model for a synthetic tumour suppressor molecule. Oncogene, 1998, 16, 587-596.	5.9	80
56	Differential expression and functionally co-operative roles for the retinoblastoma family of proteins in epidermal differentiation. Oncogene, 1998, 17, 949-957.	5.9	63
57	Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Current Biology, 1997, 7, 71-80.	3.9	179
58	Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide from p16CDKN2/INK4A. Current Biology, 1996, 6, 84-91.	3.9	161
59	RNA helicase activity of the plum pox potyvirus Cl protein expressed inEscherichia coli. Mapping of an RNA binding domain. Nucleic Acids Research, 1995, 23, 1327-1332.	14.5	83
60	Nucleotide sequence of a nucleoside triphosphate phosphohydrolase gene from African swine fever virus. Virus Research, 1993, 30, 63-72.	2.2	8
61	Proteolytic activity of plum pox virus-tobacco etch virus chimeric Nlaproteases. FEBS Letters, 1991, 281, 67-72.	2.8	7
62	Identification of the initiation codon of plum pox potyvirus genomic RNA. Virology, 1991, 185, 544-552.	2.4	44
63	Infectious in Vitro transcripts from a plum pox potyvirus cDNA clone. Virology, 1990, 177, 710-716.	2.4	77
64	Determination of polyprotein processing sites by amino terminal sequencing of nonstructural proteins encoded by plum pox potyvirus. Virus Research, 1990, 15, 97-106.	2.2	25
65	Proteolytic activity of the plum pox potyvirus Nla-like protein in Escherichia coli. Virology, 1989, 170, 362-369.	2.4	77
66	Homologous potyvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins. Gene, 1989, 82, 357-362.	2.2	89
67	The complete nucleotide sequence of plum pox potyvirus RNA. Virus Research, 1989, 13, 157-172.	2.2	139
68	Proteolytic activity of the plum pox potyvirus NIa-protein on excess of natural and artificial substrates inEscherichia coli. FEBS Letters, 1989, 257, 269-273.	2.8	21
69	Nucleotide sequence of the 3' terminal region of plum pox potyvirus RNA. Virus Research, 1988, 10, 325-341.	2.2	89