
Troy Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2245887/publications.pdf Version: 2024-02-01

TDOV STEVENS

#	Article	IF	CITATIONS
1	Cytotoxic tau released from lung microvascular endothelial cells upon infection with Pseudomonas aeruginosa promotes neuronal tauopathy. Journal of Biological Chemistry, 2022, 298, 101482.	1.6	14
2	ExoU Induces Lung Endothelial Cell Damage and Activates Pro-Inflammatory Caspase-1 during Pseudomonas aeruginosa Infection. Toxins, 2022, 14, 152.	1.5	5
3	Integrative Toolkit to Analyze Cellular Signals: Forces, Motion, Morphology, and Fluorescence. Journal of Visualized Experiments, 2022, , .	0.2	3
4	Carbonic anhydrase IX proteoglycan-like and intracellular domains mediate pulmonary microvascular endothelial cell repair and angiogenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L48-L57.	1.3	1
5	Impact of Na+ permeation on collective migration of pulmonary arterial endothelial cells. PLoS ONE, 2021, 16, e0250095.	1.1	4
6	Development of a Novel Point of Care Test for Toxic Amyloids in Patients Recovering from Hospital Acquired Pneumonia. FASEB Journal, 2021, 35, .	0.2	0
7	Mechanomic Engagement Profile: Integrative Mapping of the Mechanical Properties that Inform Endothelial Cell Motion. FASEB Journal, 2021, 35, .	0.2	0
8	An Automated <i>In Vitro</i> Experimental Platform to Analyze Structure, Motion and Forces in Adherent Cells. FASEB Journal, 2021, 35, .	0.2	0
9	TdTomato Transgenic Reporter Rat Reveals Endothelialâ€6pecific Changes in Progression of PAH. FASEB Journal, 2021, 35, .	0.2	0
10	Salvaging the endothelium in acute respiratory distress syndrome: a druggable intersection between TLR4 and NAD+ signalling. European Respiratory Journal, 2021, 57, 2004588.	3.1	0
11	Carbonic Anhydrase IX and Hypoxia Promote Rat Pulmonary Endothelial Cell Survival during Infection. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 630-645.	1.4	3
12	Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L358-L376.	1.3	10
13	Pneumonia initiates a tauopathy. FASEB Journal, 2021, 35, e21807.	0.2	20
14	Unleashing shear: Role of intercellular traction and cellular moments in collective cell migration. Biochemical and Biophysical Research Communications, 2020, 522, 279-285.	1.0	9
15	Cystatin C regulates the cytotoxicity of infectionâ€induced endothelialâ€derived βâ€amyloid. FEBS Open Bio, 2020, 10, 2464-2477.	1.0	3
16	Virulent <i>Pseudomonas aeruginosa</i> infection converts antimicrobial amyloids into cytotoxic prions. FASEB Journal, 2020, 34, 9156-9179.	0.2	26
17	Biventricular diastolic dysfunction, thrombocytopenia, and red blood cell macrocytosis in experimental pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-12.	0.8	7
18	Pneumonia-induced endothelial amyloids reduce dendritic spine density in brain neurons. Scientific Reports, 2020, 10, 9327.	1.6	10

#	Article	IF	CITATIONS
19	Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study. Toxins, 2020, 12, 369.	1.5	16
20	A cancer amidst us: the plexiform lesion in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1142-L1144.	1.3	3
21	KD025 Shifts Pulmonary Endothelial Cell Bioenergetics and Decreases Baseline Lung Permeability. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 519-530.	1.4	9
22	Development of an endothelial cell-restricted transgenic reporter rat: a resource for physiological studies of vascular biology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H349-H358.	1.5	4
23	Exoenzyme Y induces extracellular active caspase-7 accumulation independent from apoptosis: modulation of transmissible cytotoxicity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L380-L390.	1.3	13
24	α-Tocopherol Attenuates the Severity of <i>Pseudomonas aeruginosa</i> –induced Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 234-243.	1.4	10
25	Mechanical signaling in a pulmonary microvascular endothelial cell monolayer. Biochemical and Biophysical Research Communications, 2019, 519, 337-343.	1.0	8
26	Infectionâ€induced endothelial amyloids impair memory. FASEB Journal, 2019, 33, 10300-10314.	0.2	20
27	Extrinsic acidosis suppresses glycolysis and migration while increasing network formation in pulmonary microvascular endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L188-L201.	1.3	15
28	Resolving tractions across cell ell adhesion reveals the role of intercellular shear in plithotaxis. FASEB Journal, 2019, 33, lb593.	0.2	0
29	Nosocomial Pneumonia Elicits an Endothelial Proteinopathy: Evidence for a Source of Neurotoxic Amyloids in Critically III Patients. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1575-1578.	2.5	22
30	Carbonic anhydrase IX is a critical determinant of pulmonary microvascular endothelial cell pH regulation and angiogenesis during acidosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L41-L51.	1.3	19
31	Methods for Detecting Cytotoxic Amyloids Following Infection of Pulmonary Endothelial Cells by Pseudomonas aeruginosa . Journal of Visualized Experiments, 2018, , .	0.2	7
32	The role of endothelial leak in pulmonary hypertension (2017 Grover Conference Series). Pulmonary Circulation, 2018, 8, 1-9.	0.8	5
33	Pulmonary vascular dysfunction secondary to pulmonary arterial hypertension: insights gained through retrograde perfusion. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L835-L845.	1.3	9
34	Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids. FASEB Journal, 2017, 31, 2785-2796.	0.2	31
35	Single cell cloning generates lung endothelial colonies with conserved growth, angiogenic, and bioenergetic characteristics. Pulmonary Circulation, 2017, 7, 777-792.	0.8	16
36	The Pseudomonas aeruginosa Exoenzyme Y: A Promiscuous Nucleotidyl Cyclase Edema Factor and Virulence Determinant. Handbook of Experimental Pharmacology, 2016, 238, 67-85.	0.9	23

#	Article	IF	CITATIONS
37	Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L560-L569.	1.3	36
38	Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca2+ Transients in Severe Pulmonary Arterial Hypertension. American Journal of Pathology, 2016, 186, 1701-1709.	1.9	19
39	<i>Pseudomonas aeruginosa</i> exoenzymes U and Y induce a transmissible endothelial proteinopathy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L337-L353.	1.3	32
40	Lung Endothelium. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2015, 7, 1-66.	0.3	2
41	Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. Journal of Cell Biology, 2015, 210, 1199-1211.	2.3	88
42	Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1. American Journal of Physiology - Cell Physiology, 2015, 308, C277-C288.	2.1	20
43	Rhoâ€kinase Mediates Biventricular Coronary Arterial Remodeling During Pulmonary Arterial Hypertension in Fischer 344 Rats. FASEB Journal, 2015, 29, 953.1.	0.2	0
44	A Unique Pulmonary Microvascular Endothelial Cell Niche Revealed by Weibelâ€Palade Bodies and <i>Griffonia Simplicifolia</i> . Pulmonary Circulation, 2014, 4, 110-115.	0.8	22
45	The <i>Pseudomonas aeruginosa</i> exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L915-L924.	1.3	63
46	TRPC4 Inactivation Confers a Survival Benefit in Severe Pulmonary Arterial Hypertension. American Journal of Pathology, 2013, 183, 1779-1788.	1.9	39
47	Pseudomonas aeruginosa Exotoxin Y-Mediated Tau Hyperphosphorylation Impairs Microtubule Assembly in Pulmonary Microvascular Endothelial Cells. PLoS ONE, 2013, 8, e74343.	1.1	41
48	Lactate Dehydrogenase A Expression Is Necessary to Sustain Rapid Angiogenesis of Pulmonary Microvascular Endothelium. PLoS ONE, 2013, 8, e75984.	1.1	29
49	Studies on the cell biology of interendothelial cell gaps. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L275-L286.	1.3	54
50	Human Pulmonary Microvascular Endothelial Cells Support Productive Replication of Highly Pathogenic Avian Influenza Viruses: Possible Involvement in the Pathogenesis of Human H5N1 Virus Infection. Journal of Virology, 2012, 86, 667-678.	1.5	85
51	Pseudomonas aeruginosa Exotoxin Y Is a Promiscuous Cyclase That Increases Endothelial Tau Phosphorylation and Permeability. Journal of Biological Chemistry, 2012, 287, 25407-25418.	1.6	85
52	Orai1 Determines Calcium Selectivity of an Endogenous TRPC Heterotetramer Channel. Circulation Research, 2012, 110, 1435-1444.	2.0	61
53	Functional and Molecular Heterogeneity of Pulmonary Endothelial Cells. Proceedings of the American Thoracic Society, 2011, 8, 453-457.	3.5	78
54	Cold exposure reveals two populations of microtubules in pulmonary endothelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L132-L138.	1.3	29

#	Article	IF	CITATIONS
55	Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L117-L124.	1.3	34
56	Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance*. Critical Care Medicine, 2010, 38, 1458-1466.	0.4	46
57	Store-Operated Calcium Entry Channels in Pulmonary Endothelium: The Emerging Story of TRPCS and Orai1. Advances in Experimental Medicine and Biology, 2010, 661, 137-154.	0.8	37
58	Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L513-L522.	1.3	130
59	Strategic Plan for Lung Vascular Research. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1554-1562.	2.5	73
60	New Developments in Lung Endothelial Heterogeneity: von Willebrand Factor, P-Selectin, and the Weibel-Palade Body. Seminars in Thrombosis and Hemostasis, 2010, 36, 301-308.	1.5	58
61	Pulmonary vein endothelial cells (PVECs) exhibit characteristics of multiple lung endothelial cell phenotypes. FASEB Journal, 2010, 24, 797.13.	0.2	0
62	Soluble adenylyl cyclase-dependent microtubule disassembly reveals a novel mechanism of endothelial cell retraction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L73-L83.	1.3	32
63	The actin cytoskeleton in endothelial cell phenotypes. Microvascular Research, 2009, 77, 53-63.	1.1	229
64	Development and Pathology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2009, 54, S3-S9.	1.2	237
65	TRPing on the Lung Endothelium: Calcium Channels That Regulate Barrier Function. Antioxidants and Redox Signaling, 2009, 11, 765-776.	2.5	62
66	Selective targeting of cAMP signaling components and adhesion molecules to caveolinâ€enriched fractions of pulmonary microvascular endothelial cells (PMVECs). FASEB Journal, 2009, 23, 815.3.	0.2	0
67	Efficient combinatorial approach to isolating rat pulmonary endothelial cell phenotypes. FASEB Journal, 2009, 23, 1024.3.	0.2	0
68	P. aeruginosa ExoY Increases Lung Endothelial Permeability with a Concomitant Decrease in Lung Vascular Compliance. FASEB Journal, 2009, 23, 1024.11.	0.2	0
69	Membrane and Soluble Adenylyl Cyclases Generate Discrete cAMP Pools which Discriminate between Cytoskeletal Binding Proteins to Regulate Endothelial Barrier. FASEB Journal, 2009, 23, .	0.2	0
70	P. aeruginosa ExoY Disrupts Microtubules and Induces Endothelial Cell Gap Formation. FASEB Journal, 2009, 23, 964.10.	0.2	0
71	Essential role of lactate in controlling the rapid proliferation of pulmonary microvascular endothelial cells. FASEB Journal, 2009, 23, 1024.12.	0.2	0
72	The Isoc Channel is a Critical Determinant of Interendothelial Gap Formation. FASEB Journal, 2009, 23, 964.7.	0.2	0

#	Article	IF	CITATIONS
73	Subunit stoichiometry of the endogenous endothelial I SOC channel in the pulmonary microcirculation. FASEB Journal, 2009, 23, 964.12.	0.2	1
74	Orai1 interacts with the endogenous endothelial I SOC channel both constitutively and dynamically. FASEB Journal, 2009, 23, 964.11.	0.2	0
75	Heterogeneity of barrier function in the lung reflects diversity in endothelial cell junctions. Microvascular Research, 2008, 75, 391-402.	1.1	58
76	Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. Journal of Cell Science, 2008, 121, 110-119.	1.2	49
77	The Cancer Paradigm of Severe Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 558-564.	2.5	233
78	Lung Vascular Cell Heterogeneity: Endothelium, Smooth Muscle, and Fibroblasts. Proceedings of the American Thoracic Society, 2008, 5, 783-791.	3.5	94
79	Apical secretion of collagen II from endothelial cells precedes blood vessel formation during postnatal vasculogenesis. FASEB Journal, 2008, 22, 1178.13.	0.2	0
80	The pulmonary microvascular endothelial cell glycocalyx includes sialic acid important for endothelial barrier function. FASEB Journal, 2008, 22, 1178.15.	0.2	0
81	Mitochondria's Role in Storeâ€Operated Calcium Entry. FASEB Journal, 2008, 22, 964.25.	0.2	0
82	exoY increases Pseudomonas aeruginosa virulence. FASEB Journal, 2008, 22, 928.6.	0.2	1
83	Resolution of the subunit stoichiometry of the endogenous endothelial ISOC channel. FASEB Journal, 2008, 22, 1178.16.	0.2	0
84	Calcium phosphate complexation in ISOC channel inactivation. FASEB Journal, 2008, 22, 1178.17.	0.2	0
85	Bicarbonate Regulation of Intracellular cAMP in Pulmonary Endothelial Cells. FASEB Journal, 2008, 22, 1178.14.	0.2	0
86	Activation of Storeâ€Operated Calcium Entry Channels Stably Increases Membrane‣ocalized Calcium. FASEB Journal, 2008, 22, 964.27.	0.2	0
87	Microtubule Motors Regulate ISOC Activation Necessary to Increase Endothelial Cell Permeability. Journal of Biological Chemistry, 2007, 282, 34801-34808.	1.6	30
88	Phenotypic Heterogeneity in Lung Capillary and Extra-Alveolar Endothelial Cells. Increased Extra-Alveolar Endothelial Permeability is Sufficient to Decrease Compliance. Journal of Surgical Research, 2007, 143, 70-77.	0.8	40
89	Lung microvascular resident endothelial progenitor cells exhibit high vasculogenic capacity. FASEB Journal, 2007, 21, .	0.2	0
90	Subunit stoichiometry of the endothelial ISOC channel. FASEB Journal, 2007, 21, A1432.	0.2	0

#	Article	IF	CITATIONS
91	Adenylyl cyclase 5/6 colocalizes with TRPC4 and cell adhesion molecules to caveolinâ€enriched fractions of pulmonary microvascular endothelial cells (PMVECs). FASEB Journal, 2007, 21, A1431.	0.2	0
92	Cyclic AMP Phosphodiesterase 4D4 Expression in Lung Endothelium is a Determinant of Cell Phenotype. FASEB Journal, 2007, 21, A1433.	0.2	0
93	Adenosine Monophosphate Kinase (AMPK) Expression in the Normoxic and Hypoxic Lung. FASEB Journal, 2007, 21, A1436.	0.2	0
94	On resolving the molecular identity of the endothelial cell nucleosome assembly protein. FASEB Journal, 2007, 21, A1433.	0.2	2
95	Increased extraâ€alveolar vessel permeability decreases dynamic compliance in intubated rats. FASEB Journal, 2007, 21, A557.	0.2	0
96	Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Letters, 2006, 580, 2637-2645.	1.3	101
97	Cell-Surface Protein Disulfide Isomerase Is Required for Transnitrosation of Metallothionein by S-Nitroso-Albumin in Intact Rat Pulmonary Vascular Endothelial Cells. Experimental Biology and Medicine, 2006, 231, 1507-1515.	1.1	22
98	Regulation of Endothelial Cell Barrier Function by Store-Operated Calcium Entry. Microcirculation, 2006, 13, 709-723.	1.0	60
99	Soluble Adenylyl Cyclase Reveals the Significance of cAMP Compartmentation on Pulmonary Microvascular Endothelial Cell Barrier. Circulation Research, 2006, 98, 675-681.	2.0	94
100	Downregulation of Endothelin-1 by Farnesoid X Receptor in Vascular Endothelial Cells. Circulation Research, 2006, 98, 192-199.	2.0	117
101	Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L30-L37.	1.3	70
102	Cyclic AMP Phosphodiesterase 4D4 Activity Critically Maintains Membrane cAMP in Lung Microvascular Endothelium. FASEB Journal, 2006, 20, .	0.2	0
103	Control of Store Operated Calcium Entry by the Spectrin Membrane Skeleton. FASEB Journal, 2006, 20, A869.	0.2	0
104	Association of cAMP phosphodiesterase with microtubule binding proteins in pulmonary endothelium: the PKAâ€mediated phosphorylation of Tau and MAP4. FASEB Journal, 2006, 20, A1164.	0.2	0
105	Nucleosome assembly protein plays a critical role in the proâ€proliferative phenotype observed in pulmonary microvascular endothelial cells FASEB Journal, 2006, 20, .	0.2	0
106	Disruption of spectrinâ€fâ€actin binding is sufficient to induce interâ€endothelial gaps. FASEB Journal, 2006, 20, A748.	0.2	0
107	Disruption of the proline rich region/protein 4.1 binding domain on the endothelial Isoc channel inhibits intercellular gap formation. FASEB Journal, 2006, 20, A748.	0.2	0
108	Chapter 5 Adenylyl cyclase and CAMP regulation of the endothelial barrier. Advances in Molecular and Cell Biology, 2005, 35, 139-164.	0.1	2

#	Article	IF	CITATIONS
109	The Extracellular Matrix Microenvironment Specifies Pulmonary Endothelial Cell Identity. Chest, 2005, 128, 564S.	0.4	13
110	Chapter 10 Heterogeneity of lung endothelial cells. Advances in Molecular and Cell Biology, 2005, 35, 277-310.	0.1	1
111	Activation of the Endothelial Store-Operated I SOC Ca 2+ Channel Requires Interaction of Protein 4.1 With TRPC4. Circulation Research, 2005, 97, 1164-1172.	2.0	98
112	Essential Role of a Ca 2+ -Selective, Store-Operated Current (I SOC) in Endothelial Cell Permeability. Circulation Research, 2005, 96, 856-863.	2.0	71
113	Molecular and Cellular Determinants of Lung Endothelial Cell Heterogeneity. Chest, 2005, 128, 558S-564S.	0.4	51
114	Heterogeneity of Endothelial Sheet Migration: Role in Angiogenic Plasticity Blood, 2005, 106, 3692-3692.	0.6	0
115	Paradoxical cAMP-Induced Lung Endothelial Hyperpermeability Revealed byPseudomonas aeruginosaExoY. Circulation Research, 2004, 95, 196-203.	2.0	107
116	Paired-Related Homeobox Gene Prx1 Is Required for Pulmonary Vascular Development. Circulation Research, 2004, 94, 1507-1514.	2.0	83
117	Stat3 Activity Is Required for Centrosome Duplication in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2004, 279, 41801-41806.	1.6	19
118	Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvascular Research, 2004, 67, 139-151.	1.1	222
119	On lung endothelial cell heterogeneity. Microvascular Research, 2004, 68, 1-12.	1.1	113
120	On the endothelial cell ISOC. Cell Calcium, 2003, 33, 323-336.	1.1	72
121	Ca v 3.1 (α 1G) T-Type Ca 2+ Channels Mediate Vaso-Occlusion of Sickled Erythrocytes in Lung Microcirculation. Circulation Research, 2003, 93, 346-353.	2.0	83
122	Coordinate regulation of membrane cAMP by Ca2+-inhibited adenylyl cyclase and phosphodiesterase activities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L100-L107.	1.3	54
123	Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. Journal of Cell Biology, 2002, 157, 1267-1278.	2.3	91
124	Lung Microvascular and Arterial Endothelial Cells Differ in Their Responses to Intercellular Adhesion Molecule-1 Ligation. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 872-877.	2.5	64
125	Putative Role for a Myosin Motor in Store-Operated Calcium Entry. Cell Biochemistry and Biophysics, 2002, 37, 53-70.	0.9	8
126	Essential control of an endothelial cell ISOC by the spectrin membrane skeleton. Journal of Cell Biology, 2001, 154, 1225-1234.	2.3	63

#	Article	IF	CITATIONS
127	Contribution of endogenously expressed Trp1 to a Ca2+â€selective, storeâ€operated Ca2+entry pathway. FASEB Journal, 2001, 15, 1704-1710.	0.2	103
128	Mechanisms regulating endothelial cell barrier function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L419-L422.	1.3	206
129	Receptor-dependent activation of store-operated calcium entry increases endothelial cell permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L691-L698.	1.3	36
130	Cyclic Nucleotide-gated Channels Mediate Membrane Depolarization following Activation of Store-operated Calcium Entry in Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 18887-18896.	1.6	54
131	Control of cAMP in lung endothelial cell phenotypes. Implications for control of barrier function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L119-L126.	1.3	73
132	Segmental regulation of pulmonary vascular permeability by store-operated Ca ²⁺ entry. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L41-L50.	1.3	64
133	Ca2+ Dependence of Mechanical Injury to Lung Capillaries. Journal of Applied Physiology, 1999, 86, 775-776.	1.2	3
134	Regulation of Pulmonary Endothelial Cell Shape by TRP-Mediated Calcium Entry. Chest, 1998, 114, 36S-38S.	0.4	8
135	Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L203-L222.	1.3	98
136	Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L574-L582.	1.3	89
137	The Effect of Hypoxia on Endothelial Cell Function. Endothelium: Journal of Endothelial Cell Research, 1995, 3, 1-11.	1.7	14
138	Pulmonary Function and Hypoxic Ventilatory Response in Subjects Susceptible to High-Altitude Pulmonary Edema. Chest, 1993, 103, 111-116.	0.4	61
139	Lung Endothelial Phenotypes: Insights Derived from the Systematic Study of Calcium Channels. , 0, , 129-142.		0