Giancarlo Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2245422/publications.pdf

Version: 2024-02-01

		218677	206112
75	2,397	26	48
papers	citations	h-index	g-index
76	76	76	1390
70	70	70	1370
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A road towards a beyond the Standard Model model. EPJ Web of Conferences, 2022, 258, 06003.	0.3	0
2	Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB. Condensed Matter, 2022, 7, 23.	1.8	5
3	Modelling Protein Plasticity: The Example of Frataxin and Its Variants. Molecules, 2022, 27, 1955.	3.8	2
4	Cu(II)–Glycerol– <i>N</i> -Ethylmorpholine Complex Stability Revealed by X-ray Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 1483-1492.	3.1	3
5	Znâ€Induced Interactions Between SARSâ€CoVâ€2 orf7a and BST2/Tetherin. ChemistryOpen, 2021, 10, 1133-114	41.9	11
6	SARS-CoV-2 Virion Stabilization by Zn Binding. Frontiers in Molecular Biosciences, 2020, 7, 222.	3.5	14
7	Dynamical Generation of Elementary Fermion Mass: First Lattice Evidence. Physical Review Letters, 2019, 123, 061802.	7.8	4
8	Dealing with Cu reduction in X-ray absorption spectroscopy experiments. Metallomics, 2019, 11, 1401-1410.	2.4	11
9	The Potential of EuPRAXIA@SPARC_LAB for Radiation Based Techniques. Condensed Matter, 2019, 4, 30.	1.8	12
10	X-Ray Absorption Spectroscopy Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. Condensed Matter, 2019, 4, 13.	1.8	6
11	Testing a non-perturbative mechanism for elementary fermion mass generation: numerical results. EPJ Web of Conferences, 2018, 175, 08008.	0.3	2
12	Simulating twisted mass fermions at physical light, strange, and charm quark masses. Physical Review D, 2018, 98, .	4.7	58
13	Multi-scale theoretical approach to X-ray absorption spectra in disordered systems: an application to the study of Zn(ii) in water. Physical Chemistry Chemical Physics, 2018, 20, 24775-24782.	2.8	10
14	The effect of \hat{l}^2 -sheet breaker peptides on metal associated Amyloid- \hat{l}^2 peptide aggregation process. Biophysical Chemistry, 2017, 229, 110-114.	2.8	19
15	Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach. Journal of High Energy Physics, 2017, 2017, 1.	4.7	28
16	The string-junction picture of multiquark states: an update. Journal of High Energy Physics, 2016, 2016, 1.	4.7	32
17	The role of metals in protein conformational disorders - The case of prion protein and $A\hat{l}^2$ -peptide. Journal of Physics: Conference Series, 2016, 689, 012028.	0.4	2
18	The Notion of Scientific Knowledge in Biology. Science and Education, 2016, 25, 165-197.	2.7	3

#	Article	IF	CITATIONS
19	A first-principle calculation of the XANES spectrum of Cu2+ in water. Journal of Chemical Physics, 2015, 143, 124508.	3.0	24
20	Cu(II)–Zn(II) Cross-Modulation in Amyloid–Beta Peptide Binding: An X-ray Absorption Spectroscopy Study. Journal of Physical Chemistry B, 2015, 119, 15813-15820.	2.6	16
21	On the geometry of surface stress. Journal of Chemical Physics, 2014, 140, 044702.	3.0	O
22	B-physics from Nf = 2 tmQCD: the Standard Model and beyond. Journal of High Energy Physics, 2014, 2014, 1.	4.7	70
23	Mesoscopic behavior from microscopic Markov dynamics and its application to calcium release channels. Journal of Theoretical Biology, 2014, 343, 102-112.	1.7	3
24	Kaon mixing beyond the SM from Nf = 2 tmQCD and model independent constraints from the UTA. Journal of High Energy Physics, 2013, 2013, 1 .	4.7	18
25	Leading isospin breaking effects on the lattice. Physical Review D, 2013, 87, .	4.7	90
26	qqÂ ⁻ potential. Physical Review D, 2013, 87, .	4.7	5
27	Isospin breaking effects due to the up-down mass difference in lattice QCD. Journal of High Energy Physics, 2012, 2012, 1.	4.7	51
28	Sigma terms and strangeness content of the nucleon with N f  = 2 + 1 + 1 twisted ma of High Energy Physics, 2012, 2012, 1.	ass fermior 4.7	ns. Journal
29	Zn induced structural aggregation patterns of \hat{l}^2 -amyloid peptides by first-principle simulations and XAS measurements. Metallomics, 2012, 4, 156-165.	2.4	33
30	The stress tensor of an atomistic system. Open Physics, 2012, 10, .	1.7	1
31	Lattice QCD determination of m b , f B and f Bs with twisted mass Wilson fermions. Journal of High Energy Physics, 2012, 2012, 1.	4.7	53
32	BK-parameter fromNf=2twisted mass lattice QCD. Physical Review D, 2011, 83, .	4.7	21
33	A proposal for B-physics on current lattices. Journal of High Energy Physics, 2010, 2010, 1.	4.7	43
34	Non-perturbative renormalization of quark bilinear operators with N $f = 2$ (tmQCD) Wilson fermions and the tree-level improved gauge action. Journal of High Energy Physics, 2010, 2010, 1.	4.7	88
35	Light meson physics from maximally twisted mass lattice QCD. Journal of High Energy Physics, 2010, 2010, 1.	4.7	103
36	O(<mml:math)="" 0="" 10="" 50="" 67="" etqq0="" overlock="" rgbt="" tc<="" td="" tf="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>d (display= 4.7</td><td>="inline"><mn 22</mn </td></mml:math>	d (display= 4.7	="inline"> <mn 22</mn

cutoff effects in lattice Wilson fermion simulations. Physical Review D, 2010, 81, .

3

#	Article	IF	CITATIONS
37	The stress tensor in thermodynamics and statistical mechanics. Journal of Chemical Physics, 2010, 132, 074902.	3.0	15
38	Modeling the interplay of glycine protonation and multiple histidine binding of copper in the prion protein octarepeat subdomains. Journal of Biological Inorganic Chemistry, 2009, 14, 361-374.	2.6	27
39	The role of metals in amyloid aggregation—Experiments and ab initio simulations. International Journal of Quantum Chemistry, 2008, 108, 1992-2015.	2.0	17
40	The ro^le of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations. AIP Conference Proceedings, 2007, , .	0.4	0
41	Studying the Cu binding sites in the PrP N-terminal region: a test case for ab initio simulations. European Biophysics Journal, 2007, 36, 841-845.	2.2	9
42	The stress tensor of a molecular system: An exercise in statistical mechanics. Journal of Chemical Physics, 2006, 125, 034101.	3.0	42
43	Reducing cutoff effects in maximally twisted LQCD close to the chiral limit. Journal of High Energy Physics, 2006, 2006, 038-038.	4.7	71
44	Twisted mass quarks and the phase structure of lattice QCD. European Physical Journal C, 2005, 39, 421.	3.9	64
45	TUNING FORCE-FIELD PARAMETERS BY PRESSURE MEASUREMENTS IN MICRO-CANONICAL SIMULATIONS. International Journal of Modern Physics C, 2004, 15, 205-221.	1.7	1
46	Surprises from the resolution of operator mixing in SYM. Nuclear Physics B, 2004, 685, 65-88.	2.5	22
47	On operator mixing in SYM. Nuclear Physics B, 2002, 646, 69-101.	2.5	66
48	Properties of the Konishi multiplet in Script $N=4$ SYM theory. Journal of High Energy Physics, 2001, 2001, 042-042.	4.7	86
49	Anomalous dimensions in SYM theory at order. Nuclear Physics B, 2000, 584, 216-232.	2.5	120
50	On the logarithmic behaviour in Script $N=4$ SYM theory. Journal of High Energy Physics, 1999, 1999, 020-020.	4.7	87
51	Instantons in supersymmetric Yang-Mills and D-instantons in IIB superstring theory. Journal of High Energy Physics, 1998, 1998, 013-013.	4.7	127
52	A Study of Oligonucleotide Distributions in DNA Coding Segments. Journal of Theoretical Biology, 1997, 184, 451-469.	1.7	2
53	DIS structure functions in lattice QCD. Nuclear Physics, Section B, Proceedings Supplements, 1997, 53, 801-803.	0.4	1
54	Explicit construction of Yang-Mills instantons on ALE spaces. Nuclear Physics B, 1996, 473, 367-404.	2.5	44

#	Article	IF	Citations
55	How much are homologous peptides homologous?. Journal of Theoretical Biology, 1995, 175, 437-455.	1.7	1
56	On the ADHM construction on ALE gravitational backgrounds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 359, 49-55.	4.1	10
57	Instanton effects in supersymmetric Yang-Mills theories on ALE gravitational backgrounds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 359, 56-61.	4.1	7
58	Deep inelastic scattering in improved lattice QCD (I). The first moment of structure functions. Nuclear Physics B, 1995, 433, 351-389.	2.5	48
59	Deep inelastic scattering in improved lattice QCD (II). The second moment of structure functions. Nuclear Physics B, 1995, 456, 271-295.	2.5	27
60	An Improved Method for Detection of Words with Unusual Occurrence Frequency in Nucleotidic Sequences. Journal of Theoretical Biology, 1993, 165, 659-672.	1.7	6
61	Rigorous treatment of the lattice renormalization problem offB. Physical Review D, 1993, 47, 1206-1218.	4.7	10
62	QCD perturbation theory in the temporal gauge. Zeitschrift Für Physik C-Particles and Fields, 1990, 48, 653-661.	1.5	8
63	The octet non-leptonic Hamiltonian and current algebra on the lattice with Wilson fermions. Nuclear Physics B, 1987, 289, 505-534.	2.5	76
64	Chiral symmetry on the lattice with Wilson fermions. Nuclear Physics B, 1985, 262, 331-355.	2.5	424
65	Canonical commutation relations and Gauss's law in the temporal gauge. Physical Review D, 1984, 29, 2997-2999.	4.7	13
66	On time dependence of the Wilson loop in the temporal gauge. Il Nuovo Cimento A, 1984, 84, 270-284.	0.2	5
67	Looking at hadronic final states at high energies. Nuclear Physics B, 1976, 111, 111-133.	2.5	11
68	Constraints on inclusive quantities in the multiperipheral model. Il Nuovo Cimento A, 1976, 36, 23-42.	0.2	0
69	A model for the deep inelastic annihilation functions of the nucleon. Il Nuovo Cimento A, 1974, 19, 430-444.	0.2	2
70	Conditions for the self-consistency of the multiperipheral model. Il Nuovo Cimento A, 1974, 19, 255-264.	0.2	2
71	Pion electroproduction at threshold. Il Nuovo Cimento A, 1973, 14, 425-444.	0.2	23
72	Radiative corrections to the lepton polarization and to the rate in Kâ,, "3 decay. Il Nuovo Cimento A, 1969, 62, 631-647.	0.2	3

#	Article	IF	CITATIONS
73	Multiple-scattering corrections to high-energy π+ photopreduction. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1969, 1, 537-543.	0.4	9
74	Multiple-scattering corrections to pion photoproduction. Il Nuovo Cimento A, 1969, 64, 1033-1052.	0.2	5
75	A sum rule for the pion electromagnetic form factor. Il Nuovo Cimento A, 1968, 56, 207-217.	0.2	1