Hideo Ohno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2245370/publications.pdf

Version: 2024-02-01

764 papers 65,704 citations

97 h-index 232 g-index

781 all docs

781 docs citations

times ranked

781

26372 citing authors

#	Article	IF	CITATIONS
1	Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nature Materials, 2022, 21, 81-87.	13.3	63
2	Hardware-Aware $\langle i \rangle$ In Situ $\langle i \rangle$ Learning Based on Stochastic Magnetic Tunnel Junctions. Physical Review Applied, 2022, 17, .	1.5	36
3	Nanometer-thin <i>L</i> 1-MnAl film with <i>B</i> 2-CoAl underlayer for high-speed and high-density STT-MRAM: Structure and magnetic properties. Applied Physics Letters, 2022, 120, .	1.5	6
4	Generalized scaling of spin qubit coherence in over 12,000 host materials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121808119.	3.3	38
5	Observation of domain structure in non-collinear antiferromagnetic Mn3Sn thin films by magneto-optical Kerr effect. Applied Physics Letters, 2022, 120, .	1.5	12
6	Local bifurcation with spin-transfer torque in superparamagnetic tunnel junctions. Nature Communications, 2022, 13 , .	5.8	3
7	Dual-Port SOT-MRAM Achieving 90-MHz Read and 60-MHz Write Operations Under Field-Assistance-Free Condition. IEEE Journal of Solid-State Circuits, 2021, 56, 1116-1128.	3.5	24
8	Temperature dependence of the energy barrier in $X/1X$ nm shape-anisotropy magnetic tunnel junctions. Applied Physics Letters, 2021, 118, .	1.5	10
9	Dilute Magnetic Materials. , 2021, , 1-56.		1
10	Coherent magnetization reversal of a cylindrical nanomagnet in shape-anisotropy magnetic tunnel junctions. Applied Physics Letters, 2021, 118 , .	1.5	5
11	Theory of relaxation time of stochastic nanomagnets. Physical Review B, 2021, 103, .	1.1	20
12	Nanosecond Random Telegraph Noise in In-Plane Magnetic Tunnel Junctions. Physical Review Letters, 2021, 126, 117202.	2.9	64
13	Field-free and sub-ns magnetization switching of magnetic tunnel junctions by combining spin-transfer torque and spin–orbit torque. Applied Physics Letters, 2021, 118, .	1.5	26
14	Double-Free-Layer Magnetic Tunnel Junctions for Probabilistic Bits. Physical Review Applied, 2021, 15, .	1.5	15
15	Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nature Materials, 2021, 20, 1364-1370.	13.3	87
16	Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nature Communications, 2021, 12, 2924.	5.8	40
17	Correlation of anomalous Hall effect with structural parameters and magnetic ordering in Mn3+ <i>x</i> Sn1â^' <i>x</i> thin films. AIP Advances, 2021, 11, .	0.6	14
18	Influence of domain wall anisotropy on the current-induced hysteresis loop shift for quantification of the Dzyaloshinskii-Moriya interaction. Physical Review B, 2021, 103, .	1.1	8

#	Article	IF	CITATIONS
19	Unconventional Hall effect and its variation with Co-doping in van der Waals Fe3GeTe2. Scientific Reports, 2021, 11, 14121.	1.6	13
20	Magnetization processes and magnetic domain structures in Ta/CoFeB/MgO stacks. Journal of Magnetism and Magnetic Materials, 2021, 529, 167699.	1.0	5
21	Sigmoidal curves of stochastic magnetic tunnel junctions with perpendicular easy axis. Applied Physics Letters, 2021, 119, .	1.5	10
22	Dilute Magnetic Materials. , 2021, , 923-978.		0
23	Fast Switching Down to 3.5 ns in Sub-5-nm Magnetic Tunnel Junctions Achieved by Engineering Relaxation Time. , 2021 , , .		5
24	Temperature dependence of intrinsic critical current in perpendicular easy axis CoFeB/MgO magnetic tunnel junctions. Applied Physics Letters, 2021, 119, .	1.5	8
25	Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn ₃ Sn thin films. Applied Physics Express, 2020, 13, 013001.	1.1	24
26	Energy Efficient Control of Ultrafast Spin Current to Induce Single Femtosecond Pulse Switching of a Ferromagnet. Advanced Science, 2020, 7, 2001996.	5.6	30
27	display="inline" overflow="scroll"> <mml:msub><mml:mi>Pt</mml:mi><mml:mn>38</mml:mn></mml:msub> <mml:msub><mm stretchy="false">[<mml:mi> Co</mml:mi><mml:mo></mml:mo><mml:mi> Ni</mml:mi><mml:msub></mml:msub> Multilayers, Physical</mm></mml:msub>	l:mi>Mn <mml:mo< td=""><td>mml:mi><mn< td=""></mn<></td></mml:mo<>	mml:mi> <mn< td=""></mn<>
28	Review Applied, 2020, 14. Probing edge condition of nanoscale CoFeB/MgO magnetic tunnel junctions by spin-wave resonance. Applied Physics Letters, 2020, 117, 202404.	1.5	3
29	Engineering Single-Shot All-Optical Switching of Ferromagnetic Materials. Nano Letters, 2020, 20, 8654-8660.	4. 5	37
30	Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nature Communications, 2020, 11, 5715.	5.8	49
31	Giant voltage-controlled modulation of spin Hall nano-oscillator damping. Nature Communications, 2020, 11, 4006.	5.8	48
32	Dual-Port Field-Free SOT-MRAM Achieving 90-MHz Read and 60-MHz Write Operations under 55-nm CMOS Technology and 1.2-V Supply Voltage. , 2020, , .		15
33	Complex switching behavior of magnetostatically coupled single-domain nanomagnets probed by micro-Hall magnetometry. Applied Physics Letters, 2020, 116 , .	1.5	4
34	Zero-field spin precession dynamics of high-mobility two-dimensional electron gas in persistent spin helix regime. Physical Review B, 2020, 101, .	1.1	4
35	Visualizing Magnetic Structure in 3D Nanoscale Ni–Fe Gyroid Networks. Nano Letters, 2020, 20, 3642-3650.	4.5	25
36	Probabilistic computing based on spintronics technology. , 2020, , .		1

#	Article	IF	Citations
37	Neuromorphic computing with antiferromagnetic spintronics. Journal of Applied Physics, 2020, 128, .	1.1	40
38	Composition dependence of spina $$ orbit torque in Pt1a $$	1.5	8
39	Current distribution in metallic multilayers from resistance measurements. Physical Review B, 2020, 101, .	1.1	6
40	Scaling magnetic tunnel junction down to single-digit nanometersâ€"Challenges and prospects. Applied Physics Letters, 2020, 116, .	1.5	49
41	High-Performance Shape-Anisotropy Magnetic Tunnel Junctions down to 2.3 nm., 2020, , .		31
42	Spin-Pumping-Free Determination of Spin-Orbit Torque Efficiency from Spin-Torque Ferromagnetic Resonance. Physical Review Applied, 2019, 12 , .	1.5	23
43	A 47.14-\$muext{W}\$ 200-MHz MOS/MTJ-Hybrid Nonvolatile Microcontroller Unit Embedding STT-MRAM and FPGA for IoT Applications. IEEE Journal of Solid-State Circuits, 2019, 54, 2991-3004.	3.5	39
44	Families of magnetic semiconductors â€" an overview. Journal of Semiconductors, 2019, 40, 080301.	2.0	52
45	Properties of sputtered full Heusler alloy Cr ₂ MnSb and its application in a magnetic tunnel junction. Journal Physics D: Applied Physics, 2019, 52, 495002.	1.3	8
46	Magnetization dynamics and related phenomena in semiconductors with ferromagnetism. Journal of Semiconductors, 2019, 40, 081502.	2.0	1
47	Write-error rate of nanoscale magnetic tunnel junctions in the precessional regime. Applied Physics Letters, 2019, 115, .	1.5	7
48	Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles. Nature Communications, 2019, 10, 5153.	5.8	165
49	Spin-transfer-torque magnetoresistive random-access memory (STT-MRAM) technology. , 2019, , 237-281.		7
50	Neuromorphic Computing: Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching (Adv. Mater. 23/2019). Advanced Materials, 2019, 31, 1970167.	11.1	1
51	Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching. Advanced Materials, 2019, 31, e1900636.	11.1	124
52	Reversal of domain wall chirality with ferromagnet thickness in W/(Co)FeB/MgO systems. Applied Physics Letters, 2019, 114, .	1.5	8
53	First demonstration of field-free SOT-MRAM with 0.35 ns write speed and 70 thermal stability under $400 \hat{A}^{\circ} \text{C}$ thermal tolerance by canted SOT structure and its advanced patterning/SOT channel technology., 2019,,.		41
54	Stack structure and temperature dependence of spin-orbit torques in heterostructures with antiferromagnetic PtMn. Applied Physics Letters, 2019, 115 , .	1.5	9

#	Article	IF	CITATIONS
55	Integer factorization using stochastic magnetic tunnel junctions. Nature, 2019, 573, 390-393.	13.7	298
56	Spin-orbit torque-induced switching of in-plane magnetized elliptic nanodot arrays with various easy-axis directions measured by differential planar Hall resistance. Applied Physics Letters, 2019, 114, 012410.	1.5	20
57	Giant perpendicular magnetic anisotropy in Ir/Co/Pt multilayers. Physical Review Materials, 2019, 3, .	0.9	29
58	Spin transport and spin torque in antiferromagnetic devices. Nature Physics, 2018, 14, 220-228.	6.5	298
59	Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions. Nature Communications, 2018, 9, 663.	5.8	141
60	Time and spatial evolution of spin–orbit torque-induced magnetization switching in W/CoFeB/MgO structures with various sizes. Japanese Journal of Applied Physics, 2018, 57, 04FN02.	0.8	12
61	Electric-field effect on magnetic anisotropy in Pt/Co/Pd/MgO structures deposited on GaAs and Si substrates. Applied Physics Express, 2018, 11, 013003.	1.1	13
62	Temperature dependence of ferromagnetic resonance spectra of permalloy on (Bi _{1â^'} <i>) Tj ETQq0 Physics, 2018, 57, 020302.</i>	0 0 rgBT 0.8	Overlock 10 4
63	Electric-field effect on the easy cone angle of the easy-cone state in CoFeB/MgO investigated by ferromagnetic resonance. Applied Physics Letters, 2018, 112, .	1.5	13
64	Free-layer size dependence of anisotropy field in nanoscale CoFeB/MgO magnetic tunnel junctions. Applied Physics Express, 2018, 11, 043001.	1.1	6
65	Nonvolatile Memory Devices With Magnetic Nanowires Controlled by Spin-Transfer and Spin-Orbit Torques. , 2018, , .		1
66	Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires. Applied Physics Letters, 2018, 113 , .	1.5	10
67	High thermal tolerance synthetic ferrimagnetic reference layer with modified buffer layer by ion irradiation for perpendicular anisotropy magnetic tunnel junctions , 2018, , .		0
68	Angle dependent magnetoresistance in heterostructures with antiferromagnetic and non-magnetic metals. Applied Physics Letters, 2018, 113 , .	1.5	13
69	Evaluation of energy barrier of CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis using retention time measurement. Japanese Journal of Applied Physics, 2018, 57, 04FN08.	0.8	20
70	Temperature-dependent properties of CoFeB/MgO thin films: Experiments versus simulations. Physical Review B, 2018, 98, .	1.1	46
71	An effect of capping-layer material on interfacial anisotropy and thermal stability factor of MgO/CoFeB/Ta/CoFeB/MgO/capping-layer structure. Applied Physics Letters, 2018, 113, 172401.	1.5	4
72	Perspective: Spintronic synapse for artificial neural network. Journal of Applied Physics, 2018, 124, .	1.1	67

#	Article	IF	CITATIONS
73	Preface to Special Topic: New Physics and Materials for Neuromorphic Computation. Journal of Applied Physics, 2018, 124, .	1.1	7
74	Characterization of spin–orbit torque-controlled synapse device for artificial neural network applications. Japanese Journal of Applied Physics, 2018, 57, 1002B2.	0.8	17
75	Non-linear variation of domain period under electric field in demagnetized CoFeB/MgO stacks with perpendicular easy axis. Applied Physics Letters, 2018, 112 , .	1.5	5
76	Spin-orbit torques in high-resistivity-W/CoFeB/MgO. Applied Physics Letters, 2018, 112, .	1.5	77
77	Fabrication and characterization of sub-micron scale hall devices from 2-dimensional electron gas at the heterostrutcure of GaAs/AlGaAs. AIP Conference Proceedings, 2018, , .	0.3	1
78	Evidence for Ferromagnetic Clusters in the Colossal-Magnetoresistance Material <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>ml:mn>6<</td><td>/mml:mn></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ml:mn>6<	/mml:mn>
79	MTJ-based nonvolatile logic LSI for ultra low-power and highly dependable computing. , 2018, , .		1
80	Origin of variation of shift field via annealing at $400 \hat{A}^{\circ} \text{C}$ in a perpendicular-anisotropy magnetic tunnel junction with [Co/Pt]-multilayers based synthetic ferrimagnetic reference layer. AIP Advances, 2017, 7, .	0.6	9
81	Damping constant in a free layer in nanoscale CoFeB/MgO magnetic tunnel junctions investigated by homodyne-detected ferromagnetic resonance. Applied Physics Express, 2017, 10, 013001.	1.1	9
82	Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO. AIP Advances, 2017, 7, .	0.6	10
83	Ferromagnetic resonance spectra of Py deposited on (Bi1- <i>x</i> Sb <i>x</i>)2Te3. AIP Advances, 2017, 7, .	0.6	6
84	Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures. Applied Physics Letters, 2017, 110 , .	1.5	66
85	Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices. Scientific Reports, 2017, 7, 45594.	1.6	35
86	Impact of Tungsten Sputtering Condition on Magnetic and Transport Properties of Double-MgO Magnetic Tunneling Junction With CoFeB/W/CoFeB Free Layer. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	17
87	Stack Structure Dependence of Magnetic Properties of PtMn/[Co/Ni] Films for Spin-Orbit Torque Switching Device. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	11
88	Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions. Japanese Journal of Applied Physics, 2017, 56, 0802A3.	0.8	2
89	Annealing temperature dependence of magnetic properties of CoFeB/MgO stacks on different buffer layers. Japanese Journal of Applied Physics, 2017, 56, 0802B2.	0.8	14
90	Magnetization switching schemes for nanoscale three-terminal spintronics devices. Japanese Journal of Applied Physics, 2017, 56, 0802A1.	0.8	40

#	Article	IF	Citations
91	Design of a variationâ€resilient singleâ€ended nonâ€volatile sixâ€input lookup table circuit with a redundantâ€magnetic tunnel junctionâ€based active load for smart Internetâ€ofâ€things applications. Electronics Letters, 2017, 53, 456-458.	0.5	5
92	Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3815-3820.	3.3	50
93	Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Applied Physics Express, 2017, 10, 013007.	1.1	146
94	A spin transfer torque magnetoresistance random access memory-based high-density and ultralow-power associative memory for fully data-adaptive nearest neighbor search with current-mode similarity evaluation and time-domain minimum searching. Japanese Journal of Applied Physics, 2017, 56, 04CF08.	0.8	2
95	Magnetic-field-angle dependence of coercivity in CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis. Applied Physics Letters, 2017, 111, .	1.5	18
96	Electric-field effect on spin-wave resonance in a nanoscale CoFeB/MgO magnetic tunnel junction. Applied Physics Letters, 2017, 111, .	1.5	16
97	Spintronics based random access memory: a review. Materials Today, 2017, 20, 530-548.	8.3	689
98	Spin-orbit torque induced magnetization switching in Co/Pt multilayers. Applied Physics Letters, 2017, 111, .	1.5	26
99	Magnetic and transport properties of Sb ₂ Te ₃ doped with high concentration of Cr. Applied Physics Express, 2017, 10, 103001.	1.1	17
100	Magnetic tunnel junctions with perpendicular easy axis at junction diameter of less than 20 nm. Japanese Journal of Applied Physics, 2017, 56, 0802A6.	0.8	17
101	Magnetic properties of FeV/MgO-based structures. Applied Physics Express, 2017, 10, 083001.	1.1	3
102	Three-terminal spintronics devices for CMOS integration. , 2017, , .		0
103	Spin-orbit torques and Dzyaloshinskii-Moriya interaction in PtMn/[Co/Ni] heterostructures. Applied Physics Letters, 2017, 111, .	1.5	15
104	Fast neutron tolerance of the perpendicular-anisotropy CoFeB–MgO magnetic tunnel junctions with junction diameters between 46 and 64 nm. Japanese Journal of Applied Physics, 2017, 56, 0802B3.	0.8	4
105	Current-induced magnetization switching in a nano-scale CoFeB-MgO magnetic tunnel junction under in-plane magnetic field. AIP Advances, 2017, 7, 055927.	0.6	7
106	Fabrication of a magnetic-tunnel-junction-based nonvolatile logic-in-memory LSI with content-aware write error masking scheme achieving 92% storage capacity and 79% power reduction. Japanese Journal of Applied Physics, 2017, 56, 04CN01.	0.8	7
107	Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation. Japanese Journal of Applied Physics, 2017, 56, 0802B4.	0.8	17
108	Use of analog spintronics device in performing neuro-morphic computing functions., 2017,,.		1

#	Article	IF	Citations
109	Magnetic and Free-Layer Properties of MgO/(Co)FeB/MgO Structures: Dependence on CoFeB Composition. IEEE Magnetics Letters, 2017, 8, 1-3.	0.6	16
110	Impact of sputtering condition for tungsten on magnetic and transport properties of magnetic tunneling junction with CoFeB/W/CoFeB free layer. , 2017, , .		0
111	Magnetization Reversal by Field and Current Pulses in Elliptic CoFeB/MgO Tunnel Junctions With Perpendicular Easy Axis. IEEE Magnetics Letters, 2016, 7, 1-4.	0.6	13
112	Critical role of W deposition condition on spin-orbit torque induced magnetization switching in nanoscale W/CoFeB/MgO. Applied Physics Letters, 2016, 109, .	1.5	69
113	Stochastic behavior-considered VLSI CAD environment for MTJ/MOS-hybrid microprocessor design. , 2016, , .		4
114	Electric field control of Skyrmions in magnetic nanodisks. Applied Physics Letters, 2016, 108, .	1.5	53
115	Peculiar temperature dependence of electric-field effect on magnetic anisotropy in Co/Pd/MgO system. Applied Physics Letters, 2016, 109, .	1.5	34
116	Effect of electric-field modulation of magnetic parameters on domain structure in MgO/CoFeB. AIP Advances, 2016, 6, .	0.6	27
117	Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions with high junction resistance. Applied Physics Letters, $2016,108,$	1.5	84
118	An Overview of Nonvolatile Emerging Memoriesâ€" Spintronics for Working Memories. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6, 109-119.	2.7	121
119	Current-induced domain wall motion in magnetic nanowires with various widths down to less than 20 nm. Japanese Journal of Applied Physics, 2016, 55, 04EN01.	0.8	5
120	Three-terminal spintronics devices for integrated circuits. , 2016, , .		0
121	A sub-ns three-terminal spin-orbit torque induced switching device. , 2016, , .		29
122	Free- and reference-layer magnetization modes versus in-plane magnetic field in a magnetic tunnel junction with perpendicular magnetic easy axis. Physical Review B, 2016, 94, .	1.1	4
123	Scanning the Issue. Proceedings of the IEEE, 2016, 104, 1782-1786.	16.4	33
124	Standby-Power-Free Integrated Circuits Using MTJ-Based VLSI Computing. Proceedings of the IEEE, 2016, 104, 1844-1863.	16.4	102
125	Fermi level position, Coulomb gap and Dresselhaus splitting in (Ga,Mn)As. Scientific Reports, 2016, 6, 27266.	1.6	24
126	Study on initial current leakage spots in CoFeB-capped MgO tunnel barrier by conductive atomic force microscopy. Japanese Journal of Applied Physics, 2016, 55, 04EE05.	0.8	5

#	Article	IF	Citations
127	Temperature dependence of in-plane magnetic anisotropy and anisotropic magnetoresistance in (Ga,Mn)As codoped with Li. Applied Physics Letters, 2016, 108, .	1.5	7
128	A 600-µW ultra-low-power associative processor for image pattern recognition employing magnetic tunnel junction-based nonvolatile memories with autonomic intelligent power-gating scheme. Japanese Journal of Applied Physics, 2016, 55, 04EF15.	0.8	14
129	Demonstration of Yield Improvement for On-Via MTJ Using a 2-Mbit 1T-1MTJ STT-MRAM Test Chip. , 2016, , .		9
130	Magnetic Properties of CoFeB–MgO Stacks With Different Buffer-Layer Materials (Ta or Mo). IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	16
131	Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics, 2016, 12, 333-336.	6.5	43
132	A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nature Nanotechnology, 2016, 11, 621-625.	15.6	466
133	Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature Materials, 2016, 15, 535-541.	13.3	782
134	Atomic-Scale Structure and Local Chemistry of CoFeB–MgO Magnetic Tunnel Junctions. Nano Letters, 2016, 16, 1530-1536.	4.5	85
135	Improvement of Thermal Tolerance of CoFeB–MgO Perpendicular-Anisotropy Magnetic Tunnel Junctions by Controlling Boron Composition. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	17
136	Current-Induced Magnetization Switching of CoFeB/Ta/[Co/Pd (Pt)]-Multilayers in Magnetic Tunnel Junctions With Perpendicular Anisotropy. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	7
137	Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice. Journal of Magnetism and Magnetic Materials, 2016, 400, 206-212.	1.0	12
138	Proposal and demonstration of a new spin-orbit torque induced switching device., 2015,,.		2
139	Electric-Field Modulation of Damping Constant in a Ferromagnetic Semiconductor (Ga,Mn)As. Physical Review Letters, 2015, 115, 057204.	2.9	29
140	Dependence of magnetic properties of MgO/CoFeB/Ta stacks on CoFeB and Ta thicknesses. Japanese Journal of Applied Physics, 2015, 54, 04DM04.	0.8	9
141	Vertical electric field induced suppression of fine structure splitting of excited state excitons in a single GaAs/AlGaAs island quantum dots. Applied Physics Letters, 2015, 107, 123102.	1.5	2
142	Electric-field induced nonlinear ferromagnetic resonance in a CoFeB/MgO magnetic tunnel junction. Applied Physics Letters, 2015, 107, .	1.5	15
143	Temperature dependence of energy barrier in CoFeB-MgO magnetic tunnel junctions with perpendicular easy axis. Applied Physics Letters, 2015, 107, .	1.5	27
144	Noise spectroscopy studies of GaAs/AlGaAs hall devices for optimizing micro- and nano-scale magnetic measurements., 2015,,.		1

#	Article	IF	Citations
145	Properties of perpendicular-anisotropy magnetic tunnel junctions fabricated over the bottom electrode contact. Japanese Journal of Applied Physics, 2015, 54, 04DM06.	0.8	5
146	Power-gated 32 bit microprocessor with a power controller circuit activated by deep-sleep-mode instruction achieving ultra-low power operation. Japanese Journal of Applied Physics, 2015, 54, 04DE08.	0.8	8
147	Thermal stability of a magnetic domain wall in nanowires. Physical Review B, 2015, 91, .	1.1	21
148	Control of magnetism by electric fields. Nature Nanotechnology, 2015, 10, 209-220.	15.6	741
149	Diffusion behaviors observed on the surface of CoFeB film after the natural oxidation and the annealing. , 2015, , .		0
150	$1T1MTJ\ STT\text{-MRAM}\ Cell\ Array\ Design\ with\ an\ Adaptive\ Reference\ Voltage\ Generator\ for\ Improving\ Device\ Variation\ Tolerance.\ ,\ 2015,\ ,\ .$		13
151	10 nmphi perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction with over $400 \hat{A}^{\circ} \text{C}$ high thermal tolerance by boron diffusion control. , $2015,$, .		17
152	Driving Force in Diffusion and Redistribution of Reducing Agents During Redox Reaction on the Surface of CoFeB Film. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	1
153	CoFeB Thickness Dependence of Damping Constants for Single and Double CoFeB-MgO Interface Structures. IEEE Magnetics Letters, 2015, 6, 1-3.	0.6	31
154	Temperature dependence of lattice parameter of (Ga,Mn)As on GaAs substrate. Japanese Journal of Applied Physics, 2015, 54, 098003.	0.8	2
155	Localized precessional mode of domain wall controlled by magnetic field and dc current. Applied Physics Express, 2015, 8, 023003.	1.1	4
156	In-plane anisotropy of a nano-scaled magnetic tunnel junction with perpendicular magnetic easy axis. Japanese Journal of Applied Physics, 2015, 54, 04DM03.	0.8	5
157	Ferromagnetic resonance in nanoscale CoFeB/MgO magnetic tunnel junctions. Journal of Applied Physics, 2015, 117, 17B708.	1.1	14
158	Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing. Applied Physics Letters, 2015, 106, 142407.	1.5	11
159	Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics. Journal of Applied Physics, 2015, 117, .	1.1	13
160	Inverse spin Hall effect in Pt/(Ga,Mn)As. Applied Physics Letters, 2015, 106, 222405.	1.5	4
161	Three-terminal spintronics memory devices with perpendicular anisotropy. , 2015, , .		1
162	Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Applied Physics Letters, 2015, 107, .	1.5	167

#	Article	IF	Citations
163	Fabrication of a 3000-6-input-LUTs embedded and block-level power-gated nonvolatile FPGA chip using p-MTJ-based logic-in-memory structure. , 2015, , .		6
164	Ferromagnetic resonance of Py deposited on ZnO grown by molecular beam epitaxy. Japanese Journal of Applied Physics, 2015, 54, 093001.	0.8	4
165	Challenge of MTJ-based nonvolatile logic-in-memory architecture for ultra low-power and highly dependable VLSI computing. , 2015, , .		2
166	Nonvolatile Logic-in-Memory LSI Using Cycle-Based Power Gating and its Application to Motion-Vector Prediction. IEEE Journal of Solid-State Circuits, 2015, 50, 476-489.	3.5	53
167	Magnetic Semiconductors., 2015,, 649-682.		0
168	Process-induced damage and its recovery for a CoFeB–MgO magnetic tunnel junction with perpendicular magnetic easy axis. Japanese Journal of Applied Physics, 2014, 53, 103001.	0.8	17
169	Distribution of critical current density for magnetic domain wall motion. Journal of Applied Physics, 2014, 115, 17D508.	1.1	3
170	Wide operational margin capability of 1 kbit spin-transfer-torque memory array chip with 1-PMOS and 1-bottom-pin-magnetic-tunnel-junction type cell. Japanese Journal of Applied Physics, 2014, 53, 04ED13.	0.8	7
171	Challenge of MOS/MTJ-hybrid nonvolatile logic-in-memory architecture in dark-silicon era. , 2014, , .		6
172	Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation. Applied Physics Letters, 2014, 105 , .	1.5	47
173	Material Stack Design With High Tolerance to Process-Induced Damage in Domain Wall Motion Device. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
174	Perpendicular-anisotropy CoFeB-MgO based magnetic tunnel junctions scaling down to 1X nm., 2014,,.		20
175	Strain and origin of inhomogeneous broadening probed by optically detected nuclear magnetic resonance in a (110) GaAs quantum well. Physical Review B, 2014, 89, .	1.1	6
176	Properties of (Ga,Mn)As codoped with Li. Applied Physics Letters, 2014, 104, 222408.	1.5	1
177	Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm. Applied Physics Letters, 2014, 105, .	1.5	240
178	Domain Wall Motion Device for Nonvolatile Memory and Logic — Size Dependence of Device Properties. IEEE Transactions on Magnetics, 2014, 50, 1-6.	1.2	21
179	Studies on read-stability and write-ability of fast access STT-MRAMs. , 2014, , .		5
180	Electric field-induced ferromagnetic resonance in a CoFeB/MgO magnetic tunnel junction under dc bias voltages. Applied Physics Letters, 2014, 105, .	1.5	44

#	Article	IF	Citations
181	Power reduction by power gating in differential pair type spin-transfer-torque magnetic random access memories for low-power nonvolatile cache memories. Japanese Journal of Applied Physics, 2014, 53, 04ED04.	0.8	3
182	Co/Pt multilayer based reference layers in magnetic tunnel junctions for nonvolatile spintronics VLSIs. Japanese Journal of Applied Physics, 2014, 53, 04EM02.	0.8	33
183	Direct imaging of gate-controlled persistent spin helix state in a modulation-doped GaAs/AlGaAs quantum well. Applied Physics Express, 2014, 7, 013001.	1.1	47
184	A two-transistor bootstrap type selective device for spin-transfer-torque magnetic tunnel junctions. Japanese Journal of Applied Physics, 2014, 53, 04ED03.	0.8	1
185	Plasma process induced physical damages on multilayered magnetic films for magnetic domain wall motion. Japanese Journal of Applied Physics, 2014, 53, 03DF03.	0.8	7
186	Strain dependence of nuclear spin coherence in a (110)GaAs/AlGaAs quantum well. Japanese Journal of Applied Physics, 2014, 53, 093001.	0.8	2
187	Direct mapping of photoexcited local spins in a modulation-doped GaAs/AlGaAs wires. Japanese Journal of Applied Physics, 2014, 53, 04EM04.	0.8	6
188	Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. Journal of Applied Physics, 2014, 115, 17C714.	1.1	30
189	Dilute ferromagnetic semiconductors: Physics and spintronic structures. Reviews of Modern Physics, 2014, 86, 187-251.	16.4	772
190	III–V-Based Ferromagnetic Semiconductors. , 2014, , 315-358.		0
191	Design and fabrication of a perpendicular magnetic tunnel junction based nonvolatile programmable switch achieving 40% less area using shared-control transistor structure. Journal of Applied Physics, 2014, 115, 178742.	1.1	11
192	Analysis of single-event upset of magnetic tunnel junction used in spintronic circuits caused by radiation-induced current. Journal of Applied Physics, 2014, 115, 178748.	1.1	6
193	A Nonvolatile Associative Memory-Based Context-Driven Search Engine Using 90 nm CMOS/MTJ-Hybrid Logic-in-Memory Architecture. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4, 460-474.	2.7	30
194	Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB/MgO investigated by ferromagnetic resonance. Applied Physics Letters, 2014, 105, .	1.5	106
195	$10.5~\mathrm{A}$ 90nm 20MHz fully nonvolatile microcontroller for standby-power-critical applications. , 2014 , ,		63
196	Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Physical Review B, 2014, 89, .	1.1	415
197	Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nature Communications, 2014, 5, 4655.	5.8	327
198	DC voltages in Py and Py/Pt under ferromagnetic resonance. Applied Physics Express, 2014, 7, 013002.	1.1	31

#	Article	IF	CITATIONS
199	Influence of Heavy Ion Irradiation on Perpendicular-Anisotropy CoFeB-MgO Magnetic Tunnel Junctions. IEEE Transactions on Nuclear Science, 2014, 61, 1710-1716.	1.2	35
200	Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Applied Physics Letters, 2014, 104, .	1.5	87
201	Spin-transfer-torque magnetoresistive random access memory (STT-MRAM) technology. , 2014, , 455-494.		5
202	Advances in spintronics devices for microelectronics $\$*x2014$; From spin-transfer torque to spin-orbit torque., 2014,,.		9
203	Electric Field-Induced Magnetization Switching in CoFeB-MgO—Static Magnetic Field Angle Dependence. IEEE Transactions on Magnetics, 2014, 50, 1-3.	1.2	2
204	Anomalous temperature dependence of current-induced torques in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>CoFeB</mml:mtext><mml:mi>/</mml:mi> with Ta-based underlayers. Physical Review B, 2014, 89, .</mml:math>	mm ili mtex	kt> Mg O
205	Effect of spin Hall torque on current-induced precessional domain wall motion. Applied Physics Express, 2014, 7, 033005.	1.1	14
206	Electric-field effects on magnetic properties of molecular beam epitaxially grown thin (Ga,Mn)Sb layers. Journal of Crystal Growth, 2014, 401, 633-635.	0.7	3
207	Trend of tunnel magnetoresistance and variation in threshold voltage for keeping data load robustness of metal–oxide–semiconductor/magnetic tunnel junction hybrid latches. Journal of Applied Physics, 2014, 115, 17C728.	1.1	12
208	Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer. Journal of Applied Physics, 2014, 115, 178750.	1.1	6
209	Co/Pt multilayer-based magnetic tunnel junctions with a CoFeB/Ta insertion layer. Journal of Applied Physics, 2014, 115, 17C719.	1.1	22
210	Design of an energy-efficient 2T-2MTJ nonvolatile TCAM based on a parallel-serial-combined search scheme. IEICE Electronics Express, 2014, 11, 20131006-20131006.	0.3	9
211	Complementary 5T-4MTJ nonvolatile TCAM cell circuit with phase-selective parallel writing scheme. IEICE Electronics Express, 2014, 11, 20140297-20140297.	0.3	7
212	A compact low-power nonvolatile flip-flop using domain-wall-motion-device-based single-ended structure. IEICE Electronics Express, 2014, 11, 20140296-20140296.	0.3	7
213	MgO/CoFeB/Ta/CoFeB/MgO recording structure with low intrinsic critical current and high thermal stability. Journal of the Magnetics Society of Japan, 2014, 38, 56-60.	0.5	9
214	In-plane magnetic field dependence of electric field-induced magnetization switching. Applied Physics Letters, 2013, 103, .	1.5	53
215	Depinning probability of a magnetic domain wall in nanowires by spin-polarized currents. Nature Communications, 2013, 4, 2293.	5.8	42
216	Nonvolatile logic-in-memory array processor in 90nm MTJ/MOS achieving 75% leakage reduction using cycle-based power gating. , 2013, , .		41

#	Article	IF	CITATIONS
217	MgO/CoFeB/Ta/CoFeB/MgO Recording Structure in Magnetic Tunnel Junctions With Perpendicular Easy Axis. IEEE Transactions on Magnetics, 2013, 49, 4437-4440.	1.2	120
218	A 1 Mb Nonvolatile Embedded Memory Using 4T2MTJ Cell With 32 b Fine-Grained Power Gating Scheme. IEEE Journal of Solid-State Circuits, 2013, 48, 1511-1520.	3.5	70
219	Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Applied Physics Letters, 2013, 103, .	1.5	30
220	A power-gated MPU with 3-microsecond entry/exit delay using MTJ-based nonvolatile flip-flop. , 2013, , .		17
221	Enhanced interface perpendicular magnetic anisotropy in Ta CoFeB MgO using nitrogen doped Ta underlayers. Applied Physics Letters, 2013, 102, .	1.5	117
222	Layer thickness dependence of the current-induced effective field vector in Ta \mid CoFeB \mid MgO. Nature Materials, 2013, 12, 240-245.	13.3	835
223	Molecular beam epitaxy of Ill–V ferromagnetic semiconductors. , 2013, , 477-486.		0
224	Bridging semiconductor and magnetism. Journal of Applied Physics, 2013, 113, .	1.1	16
225	Correlating the interface structure to spin injection in abrupt Fe/GaAs(001) films. Physical Review B, 2013, 87, .	1.1	23
226	Electrical endurance of Co/Ni wire for magnetic domain wall motion device. Applied Physics Letters, 2013, 102, 222410.	1.5	7
227	Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper. Applied Physics Letters, 2013, 102, .	1.5	99
228	Two-barrier stability that allows low-power operation in current-induced domain-wall motion. Nature Communications, 2013, 4, 2011.	5.8	43
229	Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nature Communications, 2013, 4, 2055.	5.8	87
230	Magnetic properties of MgO-[Co/Pt] multilayers with a CoFeB insertion layer. Journal of Applied Physics, 2013, 113, .	1.1	28
231	Comprehensive study of CoFeB-MgO magnetic tunnel junction characteristics with single- and double-interface scaling down to 1X nm. , 2013, , .		49
232	Electric field control of thermal stability and magnetization switching in (Ga,Mn)As. Applied Physics Letters, 2013, 103, 142418.	1.5	22
233	Coherent Manipulation of Nuclear Spins in Semiconductors with an Electric Field. Applied Physics Express, 2013, 6, 033002.	1.1	15
234	20-nm magnetic domain wall motion memory with ultralow-power operation. , 2013, , .		42

#	Article	IF	Citations
235	A strong anisotropy of spin dephasing time of quasi-one dimensional electron gas in modulation-doped GaAs/AlGaAs wires. Applied Physics Letters, 2013, 102, .	1.5	13
236	Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope. Applied Physics Letters, 2013, 103, 231106.	1.5	4
237	Influence of heavy ion irradiation on perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions. , 2013, , .		7
238	Hole concentration dependence of the Curie temperature of (Ga,Mn)Sb in a field-effect structure. Applied Physics Letters, 2013, 103, .	1.5	8
239	A 1-Mb STT-MRAM with zero-array standby power and 1.5-ns quick wake-up by 8-b fine-grained power gating. , 2013, , .		5
240	Size Dependence of Magnetic Properties of Nanoscale CoFeB–MgO Magnetic Tunnel Junctions with Perpendicular Magnetic Easy Axis Observed by Ferromagnetic Resonance. Applied Physics Express, 2013, 6, 063002.	1.1	38
241	CoNi Films with Perpendicular Magnetic Anisotropy Prepared by Alternate Monoatomic Layer Deposition. Applied Physics Express, 2013, 6, 073010.	1.1	16
242	Current-Induced Effective Fields Detected by Magnetotrasport Measurements. Applied Physics Express, 2013, 6, 113002.	1.1	33
243	Fabrication of a magnetic tunnel junction-based 240-tile nonvolatile field-programmable gate array chip skipping wasted write operations for greedy power-reduced logic applications. IEICE Electronics Express, 2013, 10, 20130772-20130772.	0.3	22
244	Photocurrent Measurements on a Quantum Cascade Laser Device by Fourier Transform Infrared Microscope. Japanese Journal of Applied Physics, 2012, 51, 06FE15.	0.8	2
245	Design of a Nine-Transistor/Two-Magnetic-Tunnel-Junction-Cell-Based Low-Energy Nonvolatile Ternary Content-Addressable Memory. Japanese Journal of Applied Physics, 2012, 51, 02BM06.	0.8	14
246	Dependence of Magnetic Anisotropy in Co\$_{20}\$Fe\$_{60}\$B\$_{20}\$ Free Layers on Capping Layers in MgO-Based Magnetic Tunnel Junctions with In-Plane Easy Axis. Applied Physics Express, 2012, 5, 053002.	1.1	28
247	Design of a Compact Nonvolatile Four-Input Logic Element Using a Magnetic Tunnel Junction and Metal–Oxide–Semiconductor Hybrid Structure. Japanese Journal of Applied Physics, 2012, 51, 04DM02.	0.8	6
248	Time-Resolved Switching Characteristic in Magnetic Tunnel Junction with Spin Transfer Torque Write Scheme. Japanese Journal of Applied Physics, 2012, 51, 02BM02.	0.8	7
249	Magnetic tunneling junction with Fe/NiFeB free layer for magnetic logic circuits. Journal of Applied Physics, 2012, 111, 07C709.	1.1	2
250	Domain-wall-motion cell with perpendicular anisotropy wire and in-plane magnetic tunneling junctions. Journal of Applied Physics, 2012, 111, 07C903.	1.1	10
251	Material parameters and thermal stability of synthetic ferrimagnet free layers in magnetic tunnel junction nanopillars. Journal of Applied Physics, 2012, 112, 053922.	1.1	1
252	Implementation of a perpendicular MTJ-based read-disturb-tolerant 2T-2R nonvolatile TCAM based on a reversed current reading scheme. , 2012, , .		12

#	Article	IF	CITATIONS
253	On the influence of nanometer-thin antiferromagnetic surface layer on ferromagnetic CrO2. Journal of Applied Physics, 2012, 112, 053921.	1.1	4
254	Vertical-Electrical-Field-Induced Control of the Exciton Fine Structure Splitting in GaAs Island Quantum Dots for the Generation of Polarization-Entangled Photons. Japanese Journal of Applied Physics, 2012, 51, 06FE14.	0.8	1
255	Transmission electron microscopy study on the effect of various capping layers on CoFeB/MgO/CoFeB pseudo spin valves annealed at different temperatures. Journal of Applied Physics, 2012, 111, .	1.1	50
256	Damage Recovery by Reductive Chemistry after Methanol-Based Plasma Etch to Fabricate Magnetic Tunnel Junctions. Japanese Journal of Applied Physics, 2012, 51, 08HA01.	0.8	7
257	Restructuring of memory hierarchy in computing system with spintronics-based technologies. , 2012, ,		27
258	Electric Field Effect on Magnetization of an Fe Ultrathin Film. Applied Physics Express, 2012, 5, 063007.	1.1	15
259	High-Density and Low-Power Nonvolatile Static Random Access Memory Using Spin-Transfer-Torque Magnetic Tunnel Junction. Japanese Journal of Applied Physics, 2012, 51, 02BD01.	0.8	23
260	Domain wall dynamics driven by spin transfer torque and the spin–orbit field. Journal of Physics Condensed Matter, 2012, 24, 024221.	0.7	8
261	High-speed and reliable domain wall motion device: Material design for embedded memory and logic application. , $2012, $, .		23
262	$1\mbox{Mb}$ 4T-2MTJ nonvolatile STT-RAM for embedded memories using 32b fine-grained power gating technique with $1.0\mbox{ns}/200\mbox{ps}$ wake-up/power-off times. , $2012,$, .		43
263	RECENT PROGRESS OF PERPENDICULAR ANISOTROPY MAGNETIC TUNNEL JUNCTIONS FOR NONVOLATILE VLSI. Spin, 2012, 02, 1240003.	0.6	63
264	Current-Induced Domain Wall Motion in Perpendicularly Magnetized Co/Ni Nanowire under In-Plane Magnetic Fields. Applied Physics Express, 2012, 5, 063001.	1.1	27
265	Six-input lookup table circuit with 62% fewer transistors using nonvolatile logic-in-memory architecture with series/parallel-connected magnetic tunnel junctions. Journal of Applied Physics, 2012, 111, .	1.1	51
266	Magnetic tunnel junction for magnetoresistive random access memory and beyond., 2012,,.		0
267	Design of a 270ps-access 7-transistor/2-magnetic-tunnel-junction cell circuit for a high-speed-search nonvolatile ternary content-addressable memory. Journal of Applied Physics, 2012, 111, 07E336.	1.1	23
268	Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Applied Physics Letters, 2012, 101, .	1.5	341
269	Observation of boron diffusion in an annealed Ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard x-ray photoemission. Applied Physics Letters, 2012, 101, .	1.5	64
270	Effects of boron composition on tunneling magnetoresistance ratio and microstructure of CoFeB/MgO/CoFeB pseudo-spin-valve magnetic tunnel junctions. Journal of Applied Physics, 2012, 111, 043913.	1.1	27

#	Article	IF	Citations
271	Boron Composition Dependence of Magnetic Anisotropy and Tunnel Magnetoresistance in MgO/CoFe(B) Based Stack Structures. IEEE Transactions on Magnetics, 2012, 48, 3829-3832.	1.2	28
272	High-speed simulator including accurate MTJ models for spintronics integrated circuit design. , 2012, , .		50
273	Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nature Communications, 2012, 3, 661.	5.8	76
274	Spatial control of magnetic anisotropy for current induced domain wall injection in perpendicularly magnetized CoFeB MgO nanostructures. Applied Physics Letters, 2012, 100, 192411.	1.5	16
275	Current-induced torques in magnetic materials. Nature Materials, 2012, 11, 372-381.	13.3	969
276	Observation of magnetic domain-wall dynamics transition in Co/Ni multilayered nanowires. Applied Physics Letters, 2012, 101, 022407.	1.5	5
277	Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Applied Physics Letters, 2012, 101, .	1.5	255
278	Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Physical Review B, 2012, 85, .	1.1	54
279	CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions. IEEE Magnetics Letters, 2012, 3, 3000204-3000204.	0.6	92
280	Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability, 2012, 52, 613-627.	0.9	265
281	Scalability Prospect of Three-Terminal Magnetic Domain-Wall Motion Device. IEEE Transactions on Magnetics, 2012, 48, 2152-2157.	1.2	22
282	High-Density and Low-Power Nonvolatile Static Random Access Memory Using Spin-Transfer-Torque Magnetic Tunnel Junction. Japanese Journal of Applied Physics, 2012, 51, 02BD01.	0.8	17
283	Time-Resolved Switching Characteristic in Magnetic Tunnel Junction with Spin Transfer Torque Write Scheme. Japanese Journal of Applied Physics, 2012, 51, 02BM02.	0.8	14
284	Design of a Nine-Transistor/Two-Magnetic-Tunnel-Junction-Cell-Based Low-Energy Nonvolatile Ternary Content-Addressable Memory. Japanese Journal of Applied Physics, 2012, 51, 02BM06.	0.8	24
285	Design of a Compact Nonvolatile Four-Input Logic Element Using a Magnetic Tunnel Junction and Metal–Oxide–Semiconductor Hybrid Structure. Japanese Journal of Applied Physics, 2012, 51, 04DM02.	0.8	6
286	Vertical-Electrical-Field-Induced Control of the Exciton Fine Structure Splitting in GaAs Island Quantum Dots for the Generation of Polarization-Entangled Photons. Japanese Journal of Applied Physics, 2012, 51, 06FE14.	0.8	1
287	Damage Recovery by Reductive Chemistry after Methanol-Based Plasma Etch to Fabricate Magnetic Tunnel Junctions. Japanese Journal of Applied Physics, 2012, 51, 08HA01.	0.8	16
288	Photocurrent Measurements on a Quantum Cascade Laser Device by Fourier Transform Infrared Microscope. Japanese Journal of Applied Physics, 2012, 51, 06FE15.	0.8	0

#	Article	IF	Citations
289	A 600MHz MTJ-based nonvolatile latch making use of incubation time in MTJ switching. , 2011, , .		19
290	Tunnel Magnetoresistance Properties of Double MgO-Barrier Magnetic Tunnel Junctions With Different Free-Layer Alloy Compositions and Structures. IEEE Transactions on Magnetics, 2011, 47, 1567-1570.	1.2	10
291	Domain Structure in CoFeB Thin Films With Perpendicular Magnetic Anisotropy. IEEE Magnetics Letters, 2011, 2, 3000304-3000304.	0.6	124
292	Spin-torque switching window, thermal stability, and material parameters of MgO tunnel junctions. Applied Physics Letters, 2011, 98, 162502.	1.5	18
293	Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Applied Physics Letters, 2011, 98, .	1.5	135
294	Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions. Applied Physics Letters, 2011, 99, .	1.5	143
295	Pd Layer Thickness Dependence of Tunnel Magnetoresistance Properties in CoFeB/MgO-Based Magnetic Tunnel Junctions with Perpendicular Anisotropy CoFe/Pd Multilayers. Applied Physics Express, 2011, 4, 023002.	1.1	48
296	Nuclear spin coherence time in a strained GaAs quantum well. , 2011, , .		1
297	Highly-scalable disruptive reading and restoring scheme for Gb-scale SPRAM and beyond. Solid-State Electronics, 2011, 58, 28-33.	0.8	3
298	Design and Fabrication of a One-Transistor/One-Resistor Nonvolatile Binary Content-Addressable Memory Using Perpendicular Magnetic Tunnel Junction Devices with a Fine-Grained Power-Gating Scheme. Japanese Journal of Applied Physics, 2011, 50, 063004.	0.8	13
299	Reduction of intrinsic critical current density under a magnetic field along the hard axis of a free layer in a magnetic tunnel junction. Physical Review B, 2011 , 84 , .	1.1	1
300	Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Applied Physics Letters, $2011,98,$	1.5	133
301	Magnetic Anisotropy Modulation in Ta/ CoFeB/ MgO Structure by Electric Fields. Journal of Physics: Conference Series, 2011, 266, 012092.	0.3	9
302	Origin of the collapse of tunnel magnetoresistance at high annealing temperature in CoFeB/MgO perpendicular magnetic tunnel junctions. Applied Physics Letters, 2011, 99, .	1.5	55
303	Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure. Journal of Applied Physics, 2011, 109, .	1.1	109
304	Tunnel magnetoresistance properties and annealing stability in perpendicular anisotropy MgO-based magnetic tunnel junctions with different stack structures. Journal of Applied Physics, 2011, 109, .	1.1	16
305	Magnetic Field Dependence of Quadrupolar Splitting and Nuclear Spin Coherence Time in a Strained (110) GaAs Quantum Well. Japanese Journal of Applied Physics, 2011, 50, 04DM03.	0.8	1
306	Magnetic Field Dependence of Quadrupolar Splitting and Nuclear Spin Coherence Time in a Strained (110) GaAs Quantum Well. Japanese Journal of Applied Physics, 2011, 50, 04DM03.	0.8	3

#	Article	IF	Citations
307	Design and Fabrication of a One-Transistor/One-Resistor Nonvolatile Binary Content-Addressable Memory Using Perpendicular Magnetic Tunnel Junction Devices with a Fine-Grained Power-Gating Scheme. Japanese Journal of Applied Physics, 2011, 50, 063004.	0.8	6
308	Spin-transfer switching in magnetic tunnel junctions with synthetic ferri-magnetic free layer. Journal of Physics: Conference Series, 2010, 200, 052018.	0.3	2
309	Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Applied Physics Letters, 2010, 97, .	1.5	61
310	Study of the DC Performance of Fabricated Magnetic Tunnel Junction Integrated on Back-End Metal Line of CMOS Circuits. IEICE Transactions on Electronics, 2010, E93-C, 608-613.	0.3	0
311	Simulation of magnetization switching by electric-field manipulation of magnetic anisotropy. Applied Physics Letters, 2010, 96, .	1.5	49
312	Electrically Defined Ferromagnetic Nanodots. Nano Letters, 2010, 10, 4505-4508.	4.5	13
313	Scanning Kerr Microscopy of the Spin Hall Effect in n-Doped GaAs with Various Doping Concentration. Journal of Superconductivity and Novel Magnetism, 2010, 23, 37-39.	0.8	2
314	Gate Voltage Control of Nuclear Spin Relaxation in GaAs Quantum Well. Journal of Superconductivity and Novel Magnetism, 2010, 23, 131-133.	0.8	0
315	Width and temperature dependence of lithography-induced magnetic anisotropy in (Ga,Mn)As wires. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2685-2689.	1.3	2
316	Magnetic anisotropy in a ferromagnetic (Ga,Mn)Sb thin film. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2681-2684.	1.3	11
317	Optical detection of zero-field spin precession of high mobility two-dimensional electron gas in a gated GaAs/AlGaAs quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2698-2701.	1.3	3
318	Detection of local electron and nuclear spin dynamics by time-resolved Kerr microscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2702-2706.	1.3	1
319	Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nature Materials, 2010, 9, 299-303.	13.3	71
320	A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Materials, 2010, 9, 721-724.	13.3	3,020
321	Observation of the fractional quantum Hall effect in an oxide. Nature Materials, 2010, 9, 889-893.	13.3	258
322	A window on the future of spintronics. Nature Materials, 2010, 9, 952-954.	13.3	257
323	Experimental probing of the interplay between ferromagnetism and localization in (Ga,ÂMn)As. Nature Physics, 2010, 6, 22-25.	6.5	211
324	Transient Characteristic of Fabricated Magnetic Tunnel Junction (MTJ) Programmed with CMOS Circuit. IEICE Transactions on Electronics, 2010, E93-C, 602-607.	0.3	3

#	Article	IF	CITATIONS
325	Tunnel magnetoresistance properties and film structures of double MgO barrier magnetic tunnel junctions. Applied Physics Letters, 2010, 96, .	1.5	49
326	Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Applied Physics Letters, 2010, 96, .	1.5	29
327	Band-tail shape and transport near the metal-insulator transition in Si-doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	<1.1 <mml:mn></mml:mn>	
328	CoFeB Inserted Perpendicular Magnetic Tunnel Junctions with CoFe/Pd Multilayers for High Tunnel Magnetoresistance Ratio. Japanese Journal of Applied Physics, 2010, 49, 04DM04.	0.8	11
329	Domain wall creep in (Ga,Mn)As. Applied Physics Letters, 2010, 97, 032504.	1.5	13
330	Fine-Grained Power-Gating Scheme of a Metal–Oxide–Semiconductor and Magnetic-Tunnel-Junction-Hybrid Bit-Serial Ternary Content-Addressable Memory. Japanese Journal of Applied Physics, 2010, 49, 04DM05.	0.8	16
331	The Performance of Magnetic Tunnel Junction Integrated on the Back-End Metal Line of Complimentary Metal–Oxide–Semiconductor Circuits. Japanese Journal of Applied Physics, 2010, 49, 04DM06.	0.8	O
332	Curie temperature versus hole concentration in field-effect structures of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	. 1.1 ≺mml:mn	.69 >1
333	Electric double layer transistor with a (Ga,Mn)As channel. Applied Physics Letters, 2010, 96, .	1.5	40
334	A 32-Mb SPRAM With 2T1R Memory Cell, Localized Bi-Directional Write Driver and `1'/O' Dual-Array Equalized Reference Scheme. IEEE Journal of Solid-State Circuits, 2010, 45, 869-879.	3.5	115
335	Magnetization dynamics of a CrO2 grain studied by micro-Hall magnetometry. Applied Physics Letters, 2010, 97, 042507.	1.5	15
336	Anomalous Hall Effect in Field-Effect Structures of (Ga,Mn)As. Physical Review Letters, 2010, 104, 106601.	2.9	68
337	A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission. Applied Physics Letters, 2010, 96, .	1.5	60
338	Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Applied Physics Letters, 2010, 96, .	1.5	443
339	Highly-scalable disruptive reading scheme for Gb-scale SPRAM and beyond. , 2010, , .		46
340	A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions. , 2010, , .		83
341	Gate voltage dependence of nuclear spin relaxation in an impurity-doped semiconductor quantum well. Applied Physics Letters, 2010, 96, 071907.	1.5	7
342	Magnetic tunnel junction for nonvolatile CMOS logic. , 2010, , .		66

#	Article	IF	Citations
343	III–V-Based Ferromagnetic Semiconductors. , 2009, , 277-315.		2
344	Intersubband exchange interaction induced by optically excited electron spins in GaAs/AlGaAs quantum wells. Applied Physics Letters, 2009, 94, 162104.	1.5	2
345	MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers. Applied Physics Letters, 2009, 95, .	1.5	130
346	Transmission electron microscopy investigation of CoFeB/MgO/CoFeB pseudospin valves annealed at different temperatures. Journal of Applied Physics, 2009, 106 , .	1.1	81
347	Direct measurement of current-induced fieldlike torque in magnetic tunnel junctions. Journal of Applied Physics, 2009, 105, .	1.1	11
348	ac susceptibility of (Ga,Mn)As probed by the anomalous Hall effect. Journal of Applied Physics, 2009, 105, 07C516.	1.1	0
349	Thermally Activated Longitudinal Optical Phonon Scattering of a 3.8 THz GaAs Quantum Cascade Laser. Applied Physics Express, 2009, 2, 022102.	1.1	6
350	Perpendicular Magnetic Tunnel Junctions with CoFe/Pd Multilayer Electrodes and an MgO Barrier. IEEE Transactions on Magnetics, 2009, 45, 3476-3479.	1.2	19
351	Asymptomatic emphysematous cholecystitis. Journal of Medical Ultrasonics (2001), 2009, 36, 153-156.	0.6	1
352	3DAP analysis of (Ga,Mn)As diluted magnetic semiconductor thin film. Ultramicroscopy, 2009, 109, 644-648.	0.8	49
353	Intersubband optical transitions in ZnO-based quantum wells grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2009, 311, 2176-2178.	0.7	11
354	Electron density dependence of the spin Hall effect in GaAs probed by scanning Kerr rotation microscopy. Physical Review B, 2009, 80, .	1.1	40
355	MTJ-based nonvolatile logic-in-memory circuit, future prospects and issues. , 2009, , .		62
356	A disturbance-free read scheme and a compact stochastic-spin-dynamics-based MTJ circuit model for Gb-scale SPRAM., 2009,,.		36
357	Fabrication of a few-electron In0.56Ga0.44As vertical quantum dot with an Al2O3 gate insulator. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1930-1932.	1.3	0
358	Effect of vertical electric fields on exciton fine structure of GaAs natural quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2069-2071.	1.3	4
359	Fine structure in magnetospectrum of vertical quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1630-1632.	1.3	0
360	Spin-transfer physics and the model of ferromagnetism in (Ga,Mn)As. Journal of Magnetism and Magnetic Materials, 2008, 320, 1293-1299.	1.0	26

#	Article	lF	Citations
361	2 Mb SPRAM (SPin-Transfer Torque RAM) With Bit-by-Bit Bi-Directional Current Write and Parallelizing-Direction Current Read. IEEE Journal of Solid-State Circuits, 2008, 43, 109-120.	3.5	212
362	Magnetization vector manipulation by electric fields. Nature, 2008, 455, 515-518.	13.7	602
363	Chapter 5 Spintronic Properties of Ferromagnetic Semiconductors. Semiconductors and Semimetals, 2008, , 207-240.	0.4	3
364	Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeBâ^•MgOâ^•CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008, 93, .	1.5	1,259
365	SPRAM (SPin-transfer torque RAM) Technology for Green IT World. , 2008, , .		5
366	Current-Induced Magnetization Switching in MgO Barrier Magnetic Tunnel Junctions With CoFeB-Based Synthetic Ferrimagnetic Free Layers. IEEE Transactions on Magnetics, 2008, 44, 1962-1967.	1.2	83
367	A novel SPRAM (SPin-transfer torque RAM)-based reconfigurable logic block for 3D-stacked reconfigurable spin processor. , 2008, , .		10
368	TMR Design Methodology for SPin-Transfer Torque RAM (SPRAM) with Nonvolatile and SRAM Compatible Operations. , 2008, , .		9
369	Mott Relation for Anomalous Hall and Nernst Effects in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ga</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><td>>²<mml:mi< td=""><td>204 >x</td></mml:mi<></td></mml:mrow></mml:msub></mml:math>	> ² <mml:mi< td=""><td>204 >x</td></mml:mi<>	204 >x
370	Single-Shot Time-Resolved Measurements of Nanosecond-Scale Spin-Transfer Induced Switching: Stochastic Versus Deterministic Aspects. Physical Review Letters, 2008, 100, 057206.	2.9	219
371	Properties of Ga1â^'xMnxAs with high xâ€^(>0.1). Journal of Applied Physics, 2008, 103, .	1.1	20
372	0.7 anomaly and magnetotransport of disordered quantum wires. Europhysics Letters, 2008, 82, 27003.	0.7	4
373	An extensive comparison of anisotropies in MBE grown (Ga,Mn)As material. New Journal of Physics, 2008, 10, 055007.	1.2	26
374	Multipulse Operation and Optical Detection of Nuclear Spin Coherence in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>GaAs</mml:mi><mml:mo>/</mml:mo><mml:mi>AlGaAs</mml:mi></mml:math> Quantu Well. Physical Review Letters, 2008, 101, 207601.	2.9 umi	28
375	Electrical control of spin coherence in ZnO. Applied Physics Letters, 2008, 92, 162109.	1.5	20
376	Low-temperature field-effect and magnetotransport properties in a ZnO based heterostructure with atomic-layer-deposited gate dielectric. Applied Physics Letters, 2008, 93, .	1.5	22
377	Simultaneous lasing of interband and intersubband transitions in InAsâ^•AlSb quantum cascade laser structures. Applied Physics Letters, 2008, 92, 041102.	1.5	4
378	Intersubband transitions in ZnO multiple quantum wells. Applied Physics Letters, 2008, 92, .	1.5	53

#	Article	IF	Citations
379	Electrical Curie temperature modulation in (Ga,Mn)As field-effect transistors with Mn composition from 0.027 to 0.200. Journal of Applied Physics, 2008, 103, 07D139.	1.1	7
380	Electrical time-domain observation of magnetization switching induced by spin transfer in magnetic nanostructures (invited). Journal of Applied Physics, 2008, 103, 07A723.	1.1	9
381	Semiconductor Material Systems for Quantum Cascade Lasers. The Review of Laser Engineering, 2008, 36, 70-74.	0.0	0
382	SPRAM (SPin-transfer torque RAM) design and its impact on digital systems. , 2007, , .		3
383	A novel SPRAM (SPin-transfer torque RAM) with a synthetic ferrimagnetic free layer for higher immunity to read disturbance and reducing write-current dispersion. , 2007, , .		15
384	2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read., 2007,,.		106
385	Room-temperature InAsâ^•AlSb quantum-cascade laser operating at 8.9â€[micro sign]m. Electronics Letters, 2007, 43, 520.	0.5	4
386	Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Applied Physics Letters, 2007, 90, 212507.	1.5	293
387	Above room-temperature operation of InAs/AISb quantum cascade lasers. , 2007, , .		0
388	Above room-temperature operation of InAsâ-AlGaSb superlattice quantum cascade lasers emitting at 12μm. Applied Physics Letters, 2007, 90, 261112.	1.5	10
389	Properties of Galâ^'xMnxAs with high Mn composition (x>0.1). Applied Physics Letters, 2007, 90, 122503.	1.5	72
390	(In,Ga)As gated-vertical quantum dot with an Al2O3 insulator. Applied Physics Letters, 2007, 90, 062102.	1.5	6
391	Switching of tunnel magnetoresistance by domain wall motion in (Ga,Mn)As-based magnetic tunnel junctions. Applied Physics Letters, 2007, 91, .	1.5	5
392	A few-electron vertical In0.56Ga0.44As quantum dot with an insulating gate. Applied Physics Letters, 2007, 91, 232101.	1.5	3
393	Universality Classes for Domain Wall Motion in the Ferromagnetic Semiconductor (Ga,Mn)As. Science, 2007, 317, 1726-1729.	6.0	130
394	Character of states near the Fermi level in (Ga,Mn)As: Impurity to valence band crossover. Physical Review B, 2007, 76, .	1.1	139
395	Domain wall resistance in perpendicularly magnetized (Ga,Mn)As. Journal of Magnetism and Magnetic Materials, 2007, 310, 2078-2083.	1.0	6
396	Dependence of tunnel magnetoresistance on ferromagnetic electrode materials in MgO-barrier magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2007, 310, 1937-1939.	1.0	18

#	Article	IF	Citations
397	Effect of substrate temperature on the properties of heavily Mn-doped GaAs. Journal of Crystal Growth, 2007, 301-302, 264-267.	0.7	5
398	2-Mb SPRAM design: bi-directional current write and parallelizing-direction current read based on spin-transfer torque switching. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3929-3933.	0.8	2
399	Submicrometer Hall Sensors for Superparamagnetic Nanoparticle Detection. IEEE Transactions on Magnetics, 2007, 43, 2400-2402.	1.2	12
400	Magnetic Tunnel Junctions for Spintronic Memories and Beyond. IEEE Transactions on Electron Devices, 2007, 54, 991-1002.	1.6	460
401	Ferromagnetic Semiconductor Heterostructures for Spintronics. IEEE Transactions on Electron Devices, 2007, 54, 945-954.	1.6	24
402	Quantum Hall Effect in Polar Oxide Heterostructures. Science, 2007, 315, 1388-1391.	6.0	531
403	Channel Thickness Dependence of the Magnetic Properties inÂ(Ga,Mn)As FET Structures. Journal of Superconductivity and Novel Magnetism, 2007, 20, 409-411.	0.8	4
404	Portal gas in a patient with acute obstructive cholangitis: report of a case with emphasis on US findings. Journal of Medical Ultrasonics (2001), 2007, 34, 201-204.	0.6	7
405	Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer. Japanese Journal of Applied Physics, 2006, 45, L1057-L1060.	0.8	125
406	Bias voltage dependence of the electron spin injection studied in a three-terminal device based on a (Ga,Mn)Asâ^•n+-GaAs Esaki diode. Applied Physics Letters, 2006, 89, 012103.	1.5	39
407	Current-driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunnel junctions. , 2006, , .		3
408	Domain-Wall Resistance in Ferromagnetic (Ga,Mn)As. Physical Review Letters, 2006, 96, 096602.	2.9	65
409	Current-Assisted Domain Wall Motion in Ferromagnetic Semiconductors. Japanese Journal of Applied Physics, 2006, 45, 3854-3859.	0.8	18
410	Spin injection with three terminal device based on (Ga,Mn)As/n+-GaAs tunnel junction. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4164-4167.	0.8	5
411	Magnetic anisotropy in (Ga,Mn)As probed by magnetotransport measurements. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4086-4089.	0.8	14
412	Physics and materials of spintronics in semiconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4057-4061.	0.8	1
413	Control of ZnO (000)/Al2O3 (110) surface morphologies using plasma-assisted molecular beam epitaxy. Physica Status Solidi (B): Basic Research, 2006, 243, 773-777.	0.7	11
414	Engineering magnetism in semiconductors. Materials Today, 2006, 9, 18-26.	8.3	72

#	Article	IF	Citations
415	High-throughput synthesis and characterization of Mg1â^'xCaxO films as a lattice and valence-matched gate dielectric for ZnO based field effect transistors. Applied Surface Science, 2006, 252, 2507-2511.	3.1	11
416	Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 438-441.	1.3	20
417	Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeBâ^•MgOâ^•CoFeB magnetic tunnel junctions. Applied Physics Letters, 2006, 89, 232510.	1.5	205
418	Effect of GaAs Intermediary Layer Thickness on the Properties of (Ga,Mn)As Tri-Layer Structures. Journal of Superconductivity and Novel Magnetism, 2006, 18, 345-347.	0.5	5
419	Ferromagnetic semiconductors for spintronics. Physica B: Condensed Matter, 2006, 376-377, 19-21.	1.3	8
420	Electrical magnetization reversal in ferromagnetic III–V semiconductors. Journal Physics D: Applied Physics, 2006, 39, R215-R225.	1.3	15
421	Fabrication and Evaluation of Magnetic Tunnel Junction with MgO Tunneling Barrier. Japanese Journal of Applied Physics, 2006, 45, 3228-3232.	0.8	1
422	Decomposition of 1/fNoise in AlxGalâ^xAs/GaAsHall Devices. Physical Review Letters, 2006, 96, 186601.	2.9	29
423	Single-electron switching inAlxGa1â^'xAsâ^•GaAsHall devices. Physical Review B, 2006, 74, .	1.1	20
424	Tunnel magnetoresistance in MgO-barrier magnetic tunnel junctions with bcc-CoFe(B) and fcc-CoFe free layers. Journal of Applied Physics, 2006, 99, 08A907.	1.1	52
425	Surface morphologies of homoepitaxial ZnO on Zn- and O-polar substrates by plasma assisted molecular beam epitaxy. Applied Physics Letters, 2006, 89, 071918.	1.5	46
426	Optical Pump-Probe Measurements of Local Nuclear Spin Coherence in Semiconductor Quantum Wells. Physical Review Letters, 2006, 96, 067602.	2.9	48
427	Giant tunnel magnetoresistance and high annealing stability in CoFeBâ^•MgOâ^•CoFeB magnetic tunnel junctions with synthetic pinned layer. Applied Physics Letters, 2006, 89, 042506.	1.5	150
428	Pulse-width and magnetic-field dependences of current-induced magnetization switching in a (Ga,Mn)As magnetic tunnel junction. Journal of Applied Physics, 2006, 99, 08G514.	1.1	8
429	Velocity of Domain-Wall Motion Induced by Electrical Current in the Ferromagnetic Semiconductor (Ga,Mn)As. Physical Review Letters, 2006, 96, 096601.	2.9	218
430	Electric-field control of ferromagnetism in (Ga,Mn)As. Applied Physics Letters, 2006, 89, 162505.	1.5	149
431	Giant tunneling magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junction with a synthetic ferrimagnetic pin layer annealed at and above $400\text{\AA}\ddagger\text{\AA}\neg\text{C}$., 2006 ,,.		1
432	Low-frequency noise in submicron GaAs/AlxGa1â^'xAs Hall devices. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1161-1164.	1.0	1

#	Article	IF	Citations
433	Fabrication of Ternary Phase Composition-Spread Thin Film Libraries and Their High-Throughput Characterization: Ti1?x?yZrxHfyO2 for Bandgap Engineering. Journal of Superconductivity and Novel Magnetism, 2005, 18, 109-113.	0.5	12
434	Anisotropic g-factor Dependence of Dynamic Nuclear Polarization in n-GaAs/AlGaAs (110) Quantum Wells. AlP Conference Proceedings, 2005, , .	0.3	0
435	InAs Quantum Cascade Lasers Based on Coupled Quantum Well Structures. Japanese Journal of Applied Physics, 2005, 44, 2572-2574.	0.8	0
436	High-Mobility Field-Effect Transistors Based on Single-Crystalline ZnO Channels. Japanese Journal of Applied Physics, 2005, 44, L1193-L1195.	0.8	56
437	Current-driven magnetization reversal in exchange-biased spin-valve nanopillars. Journal of Applied Physics, 2005, 97, 114321.	1.1	8
438	Spin precession of holes in wurtzite GaN studied using the time-resolved Kerr rotation technique. Physical Review B, 2005, 72, .	1.1	17
439	Mid-infrared InAsâ^•AlGaSb superlattice quantum-cascade lasers. Applied Physics Letters, 2005, 87, 211113.	1.5	17
440	Magnetization reversal in elongated Fe nanoparticles. Physical Review B, 2005, 71, .	1.1	17
441	Gate Control of Dynamic Nuclear Polarization in GaAs Quantum Wells. Physical Review Letters, 2005, 94, 097601.	2.9	23
442	Strong anisotropic spin dynamics in narrow n-InGaAsâ^•AlGaAs (110) quantum wells. Applied Physics Letters, 2005, 87, 171905.	1.5	21
443	Blue Light-Emitting Diode Based on ZnO. Japanese Journal of Applied Physics, 2005, 44, L643-L645.	0.8	408
444	InAs/AlGaSb quantum cascade lasers. , 2005, , .		0
445	Dependence of Tunnel Magnetoresistance in MgO Based Magnetic Tunnel Junctions on Ar Pressure during MgO Sputtering. Japanese Journal of Applied Physics, 2005, 44, L1442-L1445.	0.8	99
446	Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness and Annealing Temperature. Japanese Journal of Applied Physics, 2005, 44, L587-L589.	0.8	242
447	Current-Driven Magnetization Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions. Japanese Journal of Applied Physics, 2005, 44, L1267-L1270.	0.8	182
448	PHYSICS: Taking the Hall Effect for a Spin. Science, 2005, 309, 2004-2005.	6.0	45
449	Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Applied Physics Letters, 2005, 87, 112502.	1.5	66
450	Control of magnetization reversal in ferromagnetic semiconductors by electrical means. Journal of Physics Condensed Matter, 2004, 16, S5693-S5696.	0.7	7

#	Article	IF	Citations
451	Current-driven switching of exchange biased spin-valve giant magnetoresistive nanopillars using a conducting nanoprobe. Journal of Applied Physics, 2004, 96, 3440-3442.	1.1	8
452	A Low Threshold Current Density InAs/AlGaSb Superlattice Quantum Cascade Laser Operating at 14 Âμm. Japanese Journal of Applied Physics, 2004, 43, L879-L881.	0.8	17
453	Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2004, 4, 42-46.	13.3	1,963
454	Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 2004, 428, 539-542.	13.7	637
455	Molecular Beam Epitaxy and Properties of Cr-Doped GaSb. Journal of Superconductivity and Novel Magnetism, 2004, 17, 349-352.	0.5	10
456	Tunneling magnetoresistance in (Ga,Mn)As-based heterostructures with a GaAs barrier. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 966-969.	1.3	122
457	Electrical properties of the patterned Co/Cu/Co sub-micron dots using a probe contact. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1443-E1445.	1.0	0
458	Hall and Field-Effect Mobilities of Electrons Accumulated at a Lattice-Matched ZnO/ScAlMgO4 Heterointerface. Advanced Materials, 2004, 16, 1887-1890.	11.1	38
459	Ferromagnetic semiconductor heterostructures. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1-6.	1.0	14
460	Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 911-915.	1.3	70
461	Electron spin dynamics in InGaAs quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1007-1011.	1.3	9
462	Magnetotransport properties of metallic (Ga,Mn)As films with compressive and tensile strain. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1032-1036.	1.3	120
463	Modulation of Noise in SubmicronGaAs/AlGaAsHall Devices by Gating. Physical Review Letters, 2004, 93, 246602.	2.9	36
464	Current-Driven Magnetization Reversal in a Ferromagnetic Semiconductor(Ga,Mn)As/GaAs/(Ga,Mn)AsTunnel Junction. Physical Review Letters, 2004, 93, 216602.	2.9	140
465	ã,¹ãf"ãf³ãf°ãfãf∢ã,¯ã,¹ã®ææ−™æ^¦ç•¥. Materia Japan, 2004, 43, 23-27.	0.1	0
466	Drift Transport of Spin-Polarized Electrons in GaAs. Journal of Superconductivity and Novel Magnetism, 2003, 16, 217-219.	0.5	6
467	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2003, 16, 179-182.	0.5	12
468	Electrical Electron Spin Injection with a p+-(Ga,Mn)As/n+-GaAs Tunnel Junction. Journal of Superconductivity and Novel Magnetism, 2003, 16, 167-170.	0.5	2

#	Article	IF	Citations
469	Molecular beam epitaxy and properties of ferromagnetic III–V semiconductors. Journal of Crystal Growth, 2003, 251, 285-291.	0.7	32
470	InAs-based quantum cascade light emitting structures containing a double plasmon waveguide. Journal of Crystal Growth, 2003, 251, 718-722.	0.7	8
471	Zincblende CrSb/GaAs multilayer structures with room-temperature ferromagnetism. Materials Science in Semiconductor Processing, 2003, 6, 507-509.	1.9	24
472	Spin degree of freedom in ferromagnetic semiconductor heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 104-110.	1.3	6
473	Intersubband absorption in n-doped InAs/AlSb multiple-quantum-well structures. Applied Physics Letters, 2003, 82, 37-39.	1.5	12
474	InAs/AlSb quantum cascade lasers operating at 10 νm. Applied Physics Letters, 2003, 82, 1003-1005.	1.5	61
475	Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor. Science, 2003, 301, 943-945.	6.0	588
476	Ferromagnetic III–V and II–VI Semiconductors. MRS Bulletin, 2003, 28, 714-719.	1.7	101
477	Magnetization reversal of iron nanoparticles studied by submicron Hall magnetometry. Journal of Applied Physics, 2003, 93, 7912-7914.	1.1	7
478	Modeling and simulation of polycrystalline ZnO thin-film transistors. Journal of Applied Physics, 2003, 94, 7768.	1.1	284
479	High Mobility Thin Film Transistors with Transparent ZnO Channels. Japanese Journal of Applied Physics, 2003, 42, L347-L349.	0.8	267
480	Effect of low-temperature annealing on (Ga,Mn)As trilayer structures. Applied Physics Letters, 2003, 82, 3020-3022.	1.5	220
481	Hysteretic dynamic nuclear polarization inGaAs/AlxGa1â^'xAs(110) quantum wells. Physical Review B, 2003, 68, .	1.1	17
482	Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors., 2003,, 197-210.		9
483	Hall magnetometry on a single iron nanoparticle. Applied Physics Letters, 2002, 80, 4644-4646.	1.5	65
484	Relaxation of photoinjected spins during drift transport in GaAs. Applied Physics Letters, 2002, 81, 2788-2790.	1.5	56
485	Anisotropic electrical spin injection in ferromagnetic semiconductor heterostructures. Applied Physics Letters, 2002, 80, 1598-1600.	1.5	53
486	Local electronic structures of GaMnAs observed by cross-sectional scanning tunneling microscopy. Applied Physics Letters, 2002, 81, 2800-2802.	1.5	28

#	Article	IF	CITATIONS
487	An InAs-Based Intersubband Quantum Cascade Laser. Japanese Journal of Applied Physics, 2002, 41, L1279-L1280.	0.8	37
488	chapter 1 III-V Ferromagnetic Semiconductors. Handbook of Magnetic Materials, 2002, 14, 1-87.	0.6	112
489	Ferromagnetism of magnetic semiconductors: Zhang-Rice limit. Physical Review B, 2002, 66, .	1.1	84
490	Ferromagnetic III–V Semiconductors and Their Heterostructures. Nanoscience and Technology, 2002, , 1-30.	1.5	22
491	Control of ferromagnetism in field-effect transistor of a magnetic semiconductor. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 351-355.	1.3	33
492	Valence band barrier at (Ga,Mn)As/GaAs interfaces. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 521-524.	1.3	33
493	Ferromagnetic semiconductors for spin electronics. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 105-107.	1.0	13
494	Microscopic identification of dopant atoms in Mn-doped GaAs layers. Solid State Communications, 2002, 121, 79-82.	0.9	20
495	Growth and properties of (Ga,Mn)As on Si (100) substrate. Journal of Crystal Growth, 2002, 237-239, 1349-1352.	0.7	13
496	Semiconductor spintronics. IEEE Nanotechnology Magazine, 2002, 1, 19-31.	1.1	112
497	Magnetic properties of (Al,Ga,Mn)As. Applied Physics Letters, 2002, 81, 2590-2592.	1.5	57
497	Magnetic properties of (Al,Ga,Mn)As. Applied Physics Letters, 2002, 81, 2590-2592. Magnetic Properties of Ill–V Ferromagnetic Semiconductor (Ga,Mn)As. Advances in Materials Research, 2002, , 169-179.	1.5	57 O
	Magnetic Properties of Ill–V Ferromagnetic Semiconductor (Ga,Mn)As. Advances in Materials Research,		
498	Magnetic Properties of Ill–V Ferromagnetic Semiconductor (Ga,Mn)As. Advances in Materials Research, 2002, , 169-179. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Physical Review B, 2001,	0.2	0
498	Magnetic Properties of Ill–V Ferromagnetic Semiconductor (Ga,Mn)As. Advances in Materials Research, 2002, , 169-179. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Physical Review B, 2001, 63, . High-energy X-ray diffraction studies of non-crystalline materials. Journal of Non-Crystalline Solids,	0.2	0
498 499 500	Magnetic Properties of Ill–V Ferromagnetic Semiconductor (Ga,Mn)As. Advances in Materials Research, 2002, , 169-179. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Physical Review B, 2001, 63, . High-energy X-ray diffraction studies of non-crystalline materials. Journal of Non-Crystalline Solids, 2001, 293-295, 125-135.	0.2 1.1 1.5	0 1,439 22
498 499 500	Magnetic Properties of Ill–V Ferromagnetic Semiconductor (Ga,Mn)As. Advances in Materials Research, 2002, , 169-179. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Physical Review B, 2001, 63, . High-energy X-ray diffraction studies of non-crystalline materials. Journal of Non-Crystalline Solids, 2001, 293-295, 125-135. Fluorescence extended x-ray absorption fine structure study on local structures around Mn atoms in thin (In, Mn)As layer and (In,â€SMn)As quantum dots. Journal of Applied Physics, 2001, 89, 66-70. Growth and properties of (Ga,Mn)As films with high Mn concentration. Journal of Applied Physics,	0.2 1.1 1.5	0 1,439 22 27

#	Article	IF	Citations
505	Spin-dependent properties of ferromagnetic/nonmagnetic GaAs heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 84, 70-74.	1.7	12
506	Ferromagnetism in III–V and II–VI semiconductor structures. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 9, 185-193.	1.3	66
507	Spin relaxation in n-modulation doped GaAs/AlGaAs quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 36-39.	1.3	51
508	Magnetic domain structure of a ferromagnetic semiconductor (Ga,Mn)As observed with scanning probe microscopes. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 135-138.	1.3	26
509	Magnetotransport properties of (Ga,Mn)As grown on GaAs A substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 206-209.	1.3	27
510	Magnetic circular dichroism in Mn 2p core absorption of Galâ^'xMnxAs. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 210-214.	1.3	26
511	Properties of (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As magnetic trilayer structures. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 278-282.	1.3	5
512	Temperature dependence of electroluminescence and l–V characteristics of ferromagnetic/non-magnetic semiconductor pn junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 288-291.	1.3	16
513	Electrical spin injection in ferromagnetic/nonmagnetic semiconductor heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 489-492.	1.3	44
514	Effect of barrier width on the performance of quantum well infrared photodetector. Infrared Physics and Technology, 2001, 42, 115-121.	1.3	8
515	Dual-band photodetectors based on interband and intersubband transitions. Infrared Physics and Technology, 2001, 42, 163-170.	1.3	11
516	SEMICONDUCTORS: Enhanced: Toward Functional Spintronics. Science, 2001, 291, 840-841.	6.0	165
517	Spin Polarization Dependent Far Infrared Absorption in Ga1-xMnxAs. Japanese Journal of Applied Physics, 2001, 40, 6231-6234.	0.8	46
518	A Spin Esaki Diode. Japanese Journal of Applied Physics, 2001, 40, L1274-L1276.	0.8	125
519	Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells. Physical Review B, 2001, 64, .	1.1	96
520	Room-temperature ferromagnetism in zincblende CrSb grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 79, 2776-2778.	1.5	203
521	Optical Manipulation of Nuclear Spin by a Two-Dimensional Electron Gas. Physical Review Letters, 2001, 86, 2677-2680.	2.9	142
522	Emission wavelength control by potential notch in type-II InAs/GaSb/AlSb intersubband light-emitting structures. Applied Physics Letters, 2001, 78, 4148-4150.	1.5	0

#	Article	IF	Citations
523	Far infrared absorption spectra in ferromagnetic Ga1-x Mn x As. Springer Proceedings in Physics, 2001, , 268-269.	0.1	1
524	Spin-dependent properties of magnetic Ill–V semiconductors. , 2001, , 337-354.		0
525	Cross-sectional scanning tunneling microscope (STM) study of Mn-doped GaAs layers. Springer Proceedings in Physics, 2001, , 244-245.	0.1	O
526	Probing and controlling spin-relaxation in GaAs quantum wells. Springer Proceedings in Physics, 2001, , 601-604.	0.1	0
527	Surfactant effect of Mn on the formation of self-organized InAs nanostructures. Journal of Crystal Growth, 2000, 208, 799-803.	0.7	18
528	Magnetic domain structures of (Ga,Mn)As investigated by scanning Hall probe microscopy. Physica B: Condensed Matter, 2000, 284-288, 1171-1172.	1.3	1
529	Ferromagnetism induced by free carriers in p-type structures of diluted magnetic semiconductors. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 967-975.	1.3	18
530	Magnetotransport properties of (Ga,Mn)As investigated at low temperature and high magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 976-980.	1.3	117
531	Molecular beam epitaxy of Ill–V diluted magnetic semiconductor (Ga,Mn)Sb. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 981-985.	1.3	78
532	Mobility dependence of electron spin relaxation time in n-type InGaAs/InAlAs multiple quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 1015-1019.	1.3	11
533	Bilayer \hat{l}_2 =2 quantum Hall state in parallel high magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 615-618.	1.3	0
534	Ferromagnetism and heterostructures of III–V magnetic semiconductors. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 702-708.	1.3	17
535	Electron spin relaxation beyond D'yakonov–Perel' interaction in GaAs/AlGaAs quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 817-820.	1.3	37
536	Mid-infrared intersubband electroluminescence in InAs/GaSb/AlSb type-II cascade structures. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 80-83.	1.3	5
537	MBE growth and electroluminescence of ferromagnetic/non-magnetic semiconductor pn junctions based on (Ga,Mn)As. Applied Surface Science, 2000, 159-160, 308-312.	3.1	21
538	Molecular beam epitaxy of GaSb with high concentration of Mn. Applied Surface Science, 2000, 159-160, 265-269.	3.1	17
539	Surface morphologies of III-V based magnetic semiconductor (Ga,Mn)As grown by molecular beam epitaxy. Applied Surface Science, 2000, 166, 242-246.	3.1	5
540	Arsenic flux dependence of InAs nanostructure formation on GaAs (211)B surface. Applied Surface Science, 2000, 166, 413-417.	3.1	14

#	Article	IF	Citations
541	Electric-field control of ferromagnetism. Nature, 2000, 408, 944-946.	13.7	1,904
542	Influence of interface bonds and buffer materials on optical properties of InAs/AISb quantum wells grown on GaAs substrates. Applied Surface Science, 2000, 159-160, 313-317.	3.1	3
543	Ferromagnetic III–V heterostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2039.	1.6	45
544	Magnetic moment of Mn in the ferromagnetic semiconductor (Ga0.98Mn0.02)As. Applied Physics Letters, 2000, 76, 2928-2930.	1.5	84
545	Magnetotransport studies of AlGaN/GaN heterostructures grown on sapphire substrates: Effective mass and scattering time. Applied Physics Letters, 2000, 76, 2737-2739.	1.5	42
546	Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga, Mn)As with a scanning Hall probe microscope. Applied Physics Letters, 2000, 77, 1363-1365.	1.5	74
547	Magnetotransport properties of (Ga, Mn)Sb. Journal of Applied Physics, 2000, 87, 6442-6444.	1.1	81
548	Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 2000, 287, 1019-1022.	6.0	7,340
549	Magnetoresistance effect and interlayer coupling of (Ga, Mn)As trilayer structures. Applied Physics Letters, 2000, 77, 1873.	1.5	143
550	Spin-dependent scattering in semiconducting ferromagnetic (Ga,Mn)As trilayer structures. Journal of Applied Physics, 2000, 87, 6436-6438.	1.1	22
551	Carrier Mobility Dependence of Electron Spin Relaxation in GaAs Quantum Wells. Japanese Journal of Applied Physics, 1999, 38, 2549-2551.	0.8	44
552	Mid-infrared intersubband electroluininescence in InAs/AlSb cascade structures. Electronics Letters, 1999, 35, 935.	0.5	6
553	Interlayer coherence inν=1andν=2bilayer quantum Hall states. Physical Review B, 1999, 59, 14888-14891.	1.1	36
554	Integrated micromechanical cantilever magnetometry of Ga1â^'xMnxAs. Applied Physics Letters, 1999, 75, 1140-1142.	1.5	57
555	Magnetic and transport properties of the ferromagnetic semiconductor heterostructures (In,Mn)As/(Ga,Al)Sb. Physical Review B, 1999, 59, 5826-5831.	1.1	80
556	Intersubband electroluminescence in InAs/GaSb/AlSb type-II cascade structures. Applied Physics Letters, 1999, 74, 1409-1411.	1.5	21
557	Metal–insulator transition and magnetotransport in III–V compound diluted magnetic semiconductors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 63, 88-95.	1.7	64
558	Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 1999, 402, 790-792.	13.7	2,315

#	Article	IF	Citations
559	InAs and (In,Mn)As nanostructures grown on GaAs(100), (211)B, and (311)B substrates. Journal of Crystal Growth, 1999, 201-202, 684-688.	0.7	9
560	Low-temperature molecular beam epitaxial growth of GaAs and (Ga,Mn)As. Journal of Crystal Growth, 1999, 201-202, 679-683.	0.7	39
561	X-ray diffraction study of InAs/AlSb interface bonds grown by molecular beam epitaxy. Journal of Crystal Growth, 1999, 201-202, 861-863.	0.7	4
562	Properties of ferromagnetic III–V semiconductors. Journal of Magnetism and Magnetic Materials, 1999, 200, 110-129.	1.0	780
563	MOCVD Growth and Transport Investigation of Two-Dimensional Electron Gas in AlGaN/GaN Heterostructures on Sapphire Substrates. Physica Status Solidi (B): Basic Research, 1999, 216, 743-748.	0.7	1
564	Magnetic Circular Dichroism Studies of Carrier-Induced Ferromagnetism in(Ga1â^'xMnx)As. Physical Review Letters, 1999, 83, 3073-3076.	2.9	258
565	Monte Carlo simulation of reentrant reflection high-energy electron diffraction intensity oscillation observed during low-temperature GaAs growth. Applied Physics Letters, 1999, 74, 3275-3277.	1.5	12
566	Spin-dependent tunneling and properties of ferromagnetic (Ga,Mn)As (invited). Journal of Applied Physics, 1999, 85, 4277-4282.	1.1	80
567	Antiferromagneticpâ^'dexchange in ferromagneticGa1â^'xMnxAsepilayers. Physical Review B, 1999, 59, 12935-12939.	1.1	145
568	Electron mobility exceeding 104 cm2/V s in an AlGaN–GaN heterostructure grown on a sapphire substrate. Applied Physics Letters, 1999, 74, 3531-3533.	1.5	68
569	Spin Relaxation in GaAs(110) Quantum Wells. Physical Review Letters, 1999, 83, 4196-4199.	2.9	389
570	High-pressure X-ray diffraction study on the structure of NaCl melt using synchrotron radiation. American Mineralogist, 1999, 84, 341-344.	0.9	8
571	III-V Based Ferromagnetic Semiconductors. Journal of the Magnetics Society of Japan, 1999, 23, 88-92.	0.4	2
572	Magnetotransport Properties of (Ga, Mn)As/GaAs/(Ga, Mn)As Trilayer Structures. Journal of the Magnetics Society of Japan, 1999, 23, 99-101.	0.4	3
573	New "coherent―bilayer quantum Hall states. , 1999, , 207-210.		0
574	Surface Kinetics and Mechanism of Atomic Layer Epitaxy of GaAs Using Trimethylgallium., 1999,, 149-161.		0
575	Phase-transformation study of metastable tetragonal zirconia powder. Journal of Materials Science, 1998, 33, 4747-4758.	1.7	6
576	Making Nonmagnetic Semiconductors Ferromagnetic., 1998, 281, 951-956.		4,503

#	Article	IF	Citations
577	Transport properties and origin of ferromagnetism in (Ga,Mn)As. Physical Review B, 1998, 57, R2037-R2040.	1.1	999
578	Strongly Anisotropic Hopping Conduction in (Ga, Mn)As/GaAs. Physica Status Solidi (B): Basic Research, 1998, 205, 115-118.	0.7	32
579	Giant Negative Magnetoresistance of (Ga,Mn)As/GaAs in the Vicinity of a Metal-Insulator Transition. Physica Status Solidi (B): Basic Research, 1998, 205, 167-171.	0.7	15
580	\hat{l} /2=1 bilayer quantum Hall state at arbitrary electron distribution in a double quantum well. Solid-State Electronics, 1998, 42, 1183-1185.	0.8	0
581	Etched-backgate field-effect transistor structure for magnetotunneling study of low-dimensional electron systems. Solid-State Electronics, 1998, 42, 1187-1190.	0.8	0
582	Well-width dependence of bound to quasi-bound intersubband transition in GaAs quantum wells with multi-quantum barriers. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 200-203.	1.3	1
583	InAs quantum dots and dashes grown on (100), (211)B, and (311)B GaAs substrates. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 672-677.	1.3	18
584	Ferromagnetic (Ga,Mn)As and its heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 904-908.	1.3	11
585	Low-temperature conduction and giant negative magnetoresistance in Ill–V-based diluted magnetic semiconductor:(Ga,Mn)As/GaAs. Physica B: Condensed Matter, 1998, 249-251, 775-779.	1.3	22
586	Superlattice and multilayer structures based on ferromagnetic semiconductor (Ga,Mn)As. Physica B: Condensed Matter, 1998, 249-251, 809-813.	1.3	11
587	Interlayer quantum coherence and anomalous stability of $\hat{l}/2=1$ bilayer quantum Hall state. Physica B: Condensed Matter, 1998, 249-251, 836-840.	1.3	2
588	Magnetotunneling spectroscopy of resonant tunneling diode using ferromagnetic (Ga,Mn)As. Physica B: Condensed Matter, 1998, 256-258, 561-564.	1.3	10
589	Magnetotransport properties of all semiconductor (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As tri-layer structures. Physica B: Condensed Matter, 1998, 256-258, 573-576.	1.3	2
590	ESR study of Mn doped II–VI and III–V DMS. Physica B: Condensed Matter, 1998, 256-258, 569-572.	1.3	9
591	Cyclotron resonance in Cd1–Fe S and Ga1–Mn As at megagauss magnetic fields. Physica B: Condensed Matter, 1998, 256-258, 565-568.	1.3	8
592	Spin dependence of the interlayer tunneling in double quantum wells in the quantum Hall regime. Physica B: Condensed Matter, 1998, 256-258, 535-539.	1.3	0
593	Low-temperature GaAs grown by molecular-beam epitaxy under high As overpressure: a reflection high-energy electron diffraction study. Applied Surface Science, 1998, 130-132, 382-386.	3.1	12
594	Self-organized (In, Mn)As diluted magnetic semiconductor nanostructures on GaAs substrates. Applied Surface Science, 1998, 130-132, 797-802.	3.1	13

#	Article	IF	CITATIONS
595	Spontaneous splitting of ferromagnetic (Ga, Mn)As valence band observed by resonant tunneling spectroscopy. Applied Physics Letters, 1998, 73, 363-365.	1.5	147
596	Interlayer exchange in (Ga,Mn)As/(Al,Ga)As/(Ga,Mn)As semiconducting ferromagnet/nonmagnet/ferromagnet trilayer structures. Applied Physics Letters, 1998, 73, 2122-2124.	1.5	53
597	Faraday rotation of ferromagnetic (Ga, Mn)As. Electronics Letters, 1998, 34, 190.	0.5	37
598	Phase Transition in the $1\frac{1}{2}$ = 2Bilayer Quantum Hall State. Physical Review Letters, 1998, 80, 4534-4537.	2.9	104
599	Light emission spectra of AlGaAs/GaAs multiquantum wells induced by scanning tunneling microscope. Applied Physics Letters, 1998, 73, 1544-1546.	1.5	41
600	Photoluminescence Study of InAs Quantum Dots and Quantum Dashes Grown on GaAs(211)B. Japanese Journal of Applied Physics, 1998, 37, 1527-1531.	0.8	32
601	X ray diffraction analysis of molten KCl and KBr under pressure: Pressure-induced structural transition in melt. Geophysical Monograph Series, 1998, , 241-248.	0.1	5
602	Magnetotransport and Magnetic Properties of (Ga,Mn)As and its Heterostructures. Acta Physica Polonica A, 1998, 94, 155-164.	0.2	1
603	(Ga, Mn)As/GaAs Diluted Magnetic Semiconductor Superlattice Structures Prepared by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1997, 36, L73-L75.	0.8	48
604	Reflection high-energy electron diffraction oscillations during growth of GaAs at low temperatures under high As overpressure. Applied Physics Letters, 1997, 71, 1540-1542.	1.5	36
605	InAs self-organized quantum dashes grown on GaAs (211)B. Applied Physics Letters, 1997, 70, 2738-2740.	1.5	42
606	Epitaxy and properties of diluted magnetic III–V semiconductor heterostructures. Applied Surface Science, 1997, 113-114, 183-188.	3.1	19
607	Growth and properties of (Ga, Mn) As: A new Ill–V diluted magnetic semiconductor. Applied Surface Science, 1997, 113-114, 178-182.	3.1	24
608	Electric field dependence of intersubband transitions in single quantum wells. Applied Surface Science, 1997, 113-114, 90-96.	3.1	7
609	Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga, Mn)As/GaAs. Solid State Communications, 1997, 103, 209-213.	0.9	150
610	Anomalous stability of $\hat{l}\frac{1}{2}$ = 1 bilayer quantum Hall state. Solid State Communications, 1997, 103, 447-451.	0.9	12
611	Epitaxy of (Ga, Mn)As, a new diluted magnetic semiconductor based on GaAs. Journal of Crystal Growth, 1997, 175-176, 1069-1074.	0.7	183
612	Preparation and properties of III-V based new diluted magnetic semiconductors. Advances in Colloid and Interface Science, 1997, 71-72, 61-75.	7.0	4

#	Article	IF	CITATIONS
613	Preparation and properties of III-V based new diluted magnetic semiconductors. Advances in Colloid and Interface Science, 1997, 71-72, 61-75.	7.0	O
614	(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 1996, 69, 363-365.	1.5	2,213
615	Pressure-induced structure change of molten KCl. High Pressure Research, 1996, 14, 375-382.	0.4	7
616	Growth of GaAs by molecular-beam epitaxy using trisdimethylaminoarsine. Journal of Crystal Growth, 1995, 149, 143-146.	0.7	1
617	Synchrotron radiation time gate quartz device for nuclear resonant scattering. Review of Scientific Instruments, 1995, 66, 2235-2237.	0.6	0
618	Effect of Hydrogen Radicals on the Reduction of Carbon Incorporation into GaAs Grown by Using Trimethylgallium. Japanese Journal of Applied Physics, 1994, 33, 3825-3829.	0.8	8
619	Kinetics and mechanism of atomic layer epitaxy of GaAs using trimethylgallium. Applied Surface Science, 1994, 82-83, 164-170.	3.1	3
620	Adsorption of carbon-related species onto GaAs(001), (011), and (111) surfaces exposed to trimethylgallium. Journal of Crystal Growth, 1994, 136, 104-108.	0.7	1
621	Influence of hydrogen radicals on the reduction of carbon incorporation into chemical beam epitaxial GaAs. Journal of Crystal Growth, 1994, 144, 126-132.	0.7	7
622	Effect of gamma-ray irradiation on in-situ electrical conductivity of ZrO2-10 mol% Gd2O3 single crystal at elevated temperatures. Journal of Nuclear Materials, 1994, 209, 321-325.	1.3	7
623	Exafs Study of (La ^{1-X} Ce ^x) ² Zr ² 0 ⁷ . Materials Research Society Symposia Proceedings, 1994, 353, 783.	0.1	5
624	INTER-SUBBAND POPULATION INVERSION IN TUNNELING HETEROSTRUCTURES. , 1994, , 47-52.		0
625	In situ Auger electron spectroscopy of carbon transient behavior on GaAs surfaces exposed to trimethylgallium. Journal of Crystal Growth, 1993, 127, 1005-1009.	0.7	7
626	Crystal Structure of Metastable Tetragonal Zirconia by Neutron Powder Diffraction Study. Journal of the American Ceramic Society, 1993, 76, 2673-2676.	1.9	51
627	Steadyâ€state hydrogen transport in a metal membrane exposed to hydrogen gas and/or a hydrogen ion beam: Reexamination of transport regime and synergistic effects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 588-596.	0.9	7
628	Auger electron spectroscopy of molecular beam epitaxially grown GaAs surfaces exposed to trimethylgallium. Applied Physics Letters, 1993, 62, 2248-2250.	1.5	3
629	Short range structure of B2O3–Cs2O glasses analyzed by xâ€ray diffraction and Raman spectroscopy. Journal of Chemical Physics, 1993, 99, 6890-6896.	1.2	18
630	Diluted Magnetic III–V Semiconductors and Its Transport Properties. Japanese Journal of Applied Physics, 1993, 32, 459.	0.8	1

#	Article	IF	CITATIONS
631	High perfection αâ€57Fe2O3 crystals for nuclear Bragg scattering. Review of Scientific Instruments, 1992, 63, 1206-1209.	0.6	6
632	lonâ€driven permeation and surface recombination coefficient of deuterium for copper. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 170-179.	0.9	10
633	(JAERI) Fourth International Symposium on Advanced Nuclear Energy Research. Journal of Nuclear Science and Technology, 1992, 29, 699-705.	0.7	1
634	Optoelectronic devices based on type II polytype tunnel heterostructures. Applied Physics Letters, 1992, 60, 3153-3155.	1.5	36
635	Tamm states in superlattices. Surface Science, 1992, 267, 161-165.	0.8	47
636	Electrical Properties of Cubic, Stabilized, Single ZrO2-Gd2O3 Crystals. Journal of the American Ceramic Society, 1992, 75, 2297-2299.	1.9	17
637	Magnetotransport properties ofp-type (In,Mn)As diluted magnetic III-V semiconductors. Physical Review Letters, 1992, 68, 2664-2667.	2.9	1,019
638	Resonant interband tunneling via Landau levels in polytype heterostructures. Physical Review B, 1991, 43, 5196-5199.	1.1	59
639	Stability of Metastable Tetragonal Zirconia. Journal of the Ceramic Society of Japan, 1991, 99, 1234-1239.	1.3	4
640	P-Type diluted magnetic III–V semiconductors. Journal of Crystal Growth, 1991, 111, 1011-1015.	0.7	63
641	New diluted magnetic semiconductors based on III–V compounds. Journal of Magnetism and Magnetic Materials, 1991, 93, 356-364.	1.0	64
642	Temperature Dependence of the Raman Spectrum in Lithium Oxide Single Crystal. Journal of the American Ceramic Society, 1991, 74, 2324-2326.	1.9	20
643	New Illâ€V diluted magnetic semiconductors (invited). Journal of Applied Physics, 1991, 69, 6103-6108.	1.1	146
644	High-Resolution Measurements of Nuclear Bragg Scattering from a Synthetic α-57Fe2O3Crystal. Japanese Journal of Applied Physics, 1991, 30, L1686-L1688.	0.8	18
645	Grain-Size Dependence of Thermal-Shock Resistance of Yttria-Doped Tetragonal Zirconia Polycrystals. Journal of the American Ceramic Society, 1990, 73, 2523-2525.	1.9	17
646	Investigation of Lithium Diffusion in Octalithium Plumbate by Conductivity and NMR Measurements. Journal of the American Ceramic Society, 1990, 73, 1710-1713.	1.9	7
647	Origin and properties of interface states at insulator-semiconductor and semiconductor-semiconductor interfaces of compound semiconductors. Applied Surface Science, 1990, 41-42, 372-382.	3.1	13
648	A computer simulation of the recombination process at compound semiconductor surfaces and hetero-interfaces. Applied Surface Science, 1990, 41-42, 402-406.	3.1	17

#	Article	IF	Citations
649	X-ray photo-electron spectroscopy analysis of InP insulator-semiconductor structures prepared by anodic oxidation. Applied Surface Science, 1990, 41-42, 390-394.	3.1	14
650	Epitaxy of Ill–V diluted magnetic semiconductor materials. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1990, 8, 176.	1.6	55
651	Observation of â€~â€~Tamm states'' in superlattices. Physical Review Letters, 1990, 64, 2555-2558.	2.9	171
652	Midgap states in metalorganic vapor phase epitaxy grown AlxGa1â^'xAs. Journal of Applied Physics, 1990, 68, 3394-3400.	1.1	15
653	Interactions between extended and localized states in superlattices. Physical Review B, 1990, 42, 1470-1473.	1.1	42
654	Effects of carrier mass differences on the currentâ€voltage characteristics of resonant tunneling structures. Applied Physics Letters, 1990, 56, 1793-1795.	1.5	33
655	MBE growth of InP using polycrystalline InP as phosphorus source. , 1990, , .		2
656	International Symposium on X-ray Synchrotron Radiation and Advanced Science & Decirio (amp; Technology). Journal of Nuclear Science and Technology, 1990, 27, 778-780.	0.7	0
657	Nuclear Spin Relaxation in Molten LiBeF ₃ . Journal of Nuclear Science and Technology, 1990, 27, 45-48.	0.7	0
658	Carrier concentration in selectively doped n-AlGaAs/GaAs single heterojunctions. Surface Science, 1990, 228, 497-499.	0.8	1
659	Lowâ€ŧemperature mobility of twoâ€dimensional electron gas in selectively doped pseudomorphicNâ€AlGaAs/GalnAs/GaAs structures. Applied Physics Letters, 1989, 54, 36-38.	1.5	25
660	Quantum Hall effect of twoâ€dimensional electron gas in AlyGa1â^'yAs/Ga1â^'xInxAs/GaAs pseudomorphic structures. Journal of Applied Physics, 1989, 66, 4549-4551.	1.1	3
661	Magnetoconductivity of a two-dimensional electron gas inAl0.3Ga0.7As/Ga1â^'xINxAs/GaAs pseudomorphic heterostructures in the quantum Hall regime. Physical Review B, 1989, 40, 3461-3464.	1.1	3
662	Atomic layer epitaxy of GaAs using triethylgallium and arsine. Applied Physics Letters, 1989, 54, 2000-2002.	1.5	35
663	Selfâ€limiting deposition of Ga on a GaAs surface by thermal decomposition of diethylgalliumchloride observed by xâ€ray photoelectron spectroscopy. Applied Physics Letters, 1989, 54, 1124-1126.	1.5	14
664	Effect of exposure to group III alkyls on compound semiconductor surfaces observed by x-ray photoelectron spectroscopy. Journal of Crystal Growth, 1989, 95, 132-135.	0.7	32
665	Diluted magnetic III-V semiconductors. Physical Review Letters, 1989, 63, 1849-1852.	2.9	1,018
666	A study of tritium behavior in lithium oxide by ion conductivity measurements. Fusion Engineering and Design, 1989, 8, 329-333.	1.0	17

#	Article	IF	CITATIONS
667	Hydrogenated amorphous carbon films deposited by lowâ€frequency plasma chemical vapor deposition at room temperature. Journal of Applied Physics, 1989, 66, 447-449.	1.1	12
668	Charge-discharge dynamics of disorder induced gap state continuum at compound semiconductor-insulator interfaces. Applied Surface Science, 1988, 33-34, 1030-1036.	3.1	7
669	Growth of GaAs, InAs, and GaAs/InAs superlattice structures at low substrate temperature by MOVPE. Journal of Crystal Growth, 1988, 93, 342-346.	0.7	25
670	Conductivity measurement and effect of impurity ions dissolved in Li2O. Journal of Nuclear Materials, 1988, 152, 9-13.	1.3	6
671	Characterization of GaAs regrowth interfaces grown by metal-organic vapor phase epitaxy. Electronics and Communications in Japan, 1988, 71, 12-19.	0.2	0
672	Correlation between Photoluminescence and Surface-State Density on GaAs Surfaces Subjected to Various Surface Treatments. Japanese Journal of Applied Physics, 1988, 27, L2177-L2179.	0.8	32
673	GaAs and In0.53Ga0.47As MIS Structures Having an Ultrathin Pseudomorphic Interface Control Layer of Si Prepared by MBE. Japanese Journal of Applied Physics, 1988, 27, L2265-L2267.	0.8	81
674	A selfâ€consistent computer simulation of compound semiconductor metalâ€insulatorâ€semiconductorCâ€Vcurves based on the disorderâ€induced gapâ€state model. Journal of Applied Physics, 1988, 63, 2120-2130.	1.1	69
675	Molecular-beam epitaxy growth of GaAs/InAs structures on (001)InP by alternating III/V fluxes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1988, 6, 593.	1.6	9
676	Control of Fermi level pinning and recombination processes at GaAs surfaces by chemical and photochemical treatments. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1988, 6, 1184.	1.6	82
677	Anodic Oxidation of Hydrogenated Amorphous Silicon and Properties of Oxide. Journal of the Electrochemical Society, 1988, 135, 424-431.	1.3	33
678	Electronic Properties and Modeling of Lattice-Mismatched and Regrown GaAs Interfaces Prepared by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1988, 27, 180-187.	0.8	86
679	Low Field Transport Properties of Two-Dimensional Electron Gas in Selectively Doped N-AlGaAs/GalnAs/GaAs Pseudomorphic Structures. Japanese Journal of Applied Physics, 1988, 27, 1831-1840.	0.8	23
680	Trimethylgallium Supply without the Use of Bubbling in GaAs Growth by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1988, 27, 2420-2420.	0.8	0
681	Anodic Oxidation for Enhancement of Fabrication Yield and Efficiency of Amorphous Silicon Solar Cells. Journal of the Electrochemical Society, 1988, 135, 431-436.	1.3	6
682	Dark Current in Selectively Doped N-AlGaAs/GaAs CCDs. Japanese Journal of Applied Physics, 1988, 27, 78-82.	0.8	1
683	A Computer Analysis of Effects of Annealing on InP Insulator-Semiconductor Interface Properties Using MIS C-V Curves. Japanese Journal of Applied Physics, 1988, 27, 512-521.	0.8	26
684	Ga0.47In0.53As metal-semiconductor-metal photodiodes using a lattice mismatched Al0.4Ga0.6As Schottky assist layer. Electronics Letters, 1988, 24, 1208.	0.5	21

#	Article	IF	CITATIONS
685	Electronic Properties of a Photochemical Oxide-GaAs Interface. Japanese Journal of Applied Physics, 1987, 26, L1871-L1873.	0.8	21
686	Electronic and microstructural properties of disorder-induced gap states at compound semiconductor–insulator interfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1987, 5, 1097.	1.6	110
687	Effect of a coincident Pb flux during mbe growth on the electrical properties of GaAs and AlGaAs layers. Journal of Crystal Growth, 1987, 81, 319-325.	0.7	1
688	Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1986, 4, 1130.	1.6	441
689	Reflection electron diffraction intensity oscillation during molecular beam epitaxial growth of (GaAs)n/(InAs)n superlattice semiconductor. Surface Science, 1986, 174, 598-599.	0.8	1
690	Temperature limitation of partially stabilized zirconia for the application of electrical insulators. Journal of Nuclear Materials, 1986, 141-143, 392-395.	1.3	3
691	A Common Energy Reference for DX Centers and EL2 Levels in III-V Compound Semiconductors. Japanese Journal of Applied Physics, 1986, 25, L319-L322.	0.8	15
692	Hybrid Orbital Energy for Heterojunction Band Lineup. Japanese Journal of Applied Physics, 1986, 25, L265-L268.	0.8	22
693	Correlation between the Location of the Interface State Minimum at Insulator-Semiconductor Interfaces and Schottky Barrier Heights. Japanese Journal of Applied Physics, 1986, 25, L353-L356.	0.8	4
694	Xâ€ray diffraction analysis of molten AlCl3–NaCl system. Journal of Chemical Physics, 1986, 84, 408-415.	1.2	20
695	X-ray Diffraction Analysis of the PbO–SiO ₂ System in the Glassy and the Molten State. Transactions of the Japan Institute of Metals, 1985, 26, 451-461.	0.5	6
696	Electrical conductivity of a sintered pellet of octalithium zirconate. Journal of Nuclear Materials, 1985, 132, 222-230.	1.3	15
697	Room temperature deposition of silicon nitride films using very low frequency (50Hz) plasma CVD. Journal of Electronic Materials, 1985, 14, 573-586.	1.0	21
698	VIA-6 Comparison of side-gating behavior between InP MISFET's and GaAs MESFET's. IEEE Transactions on Electron Devices, 1985, 32, 2552-2553.	1.6	1
699	Surface electrical breakdown and leakage current on semi-insulating InP. Electronics Letters, 1985, 21, 299.	0.5	5
700	Deep level characterization of AlGaAs and selectively doped N-AlGaAs/GaAs heterojunctions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1985, 3, 943.	1.6	18
701	Hydrogenated amorphous silicon position sensitive detector. Journal of Applied Physics, 1985, 57, 4778-4782.	1.1	46
702	Nuclear spin relaxation in Li2BeF4. Journal of Chemical Physics, 1985, 82, 3968-3974.	1.2	3

#	Article	IF	CITATIONS
703	Growth of a (GaAs)n/(InAs)nSuperlattice Semiconductor by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1985, 24, L682-L684.	0.8	21
704	Structural analysis of the molten salt 50 mol% AlCl3–50 mol% NaCl by X-ray diffraction. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 1107-1115.	1.1	8
705	Growth and electron trap characterization of GaAs by molecular beam epitaxy Shinku/Journal of the Vacuum Society of Japan, 1985, 28, 587-595.	0.2	0
706	Monolithic Integration of GaAs Photoconductive Detectors and MESFETs with Distributed Coupling to Optical Fibers. Japanese Journal of Applied Physics, 1984, 23, L648-L650.	0.8	10
707	Deep Electron Traps in Undoped GaAs Grown by MOCVD. Japanese Journal of Applied Physics, 1984, 23, L296-L298.	0.8	16
708	Free Carrier Profile Synthesis in MOCVD Grown GaAs by `Atomic-Plane' Doping. Japanese Journal of Applied Physics, 1984, 23, L369-L370.	0.8	9
709	Mechanism of High Gain in GaAs Photoconductive Detectors under Low Excitation. Japanese Journal of Applied Physics, 1984, 23, L299-L301.	0.8	20
710	Planar doping by interrupted MOVPE growth of GaAs. Journal of Crystal Growth, 1984, 68, 15-20.	0.7	21
711	Non-destructive characterization of electrical uniformity in semi-insulating GaAs substrates by microwave photoconductance technique. Journal of Electronic Materials, 1984, 13, 931-948.	1.0	10
712	InP MISFET's with Al ₂ O ₃ /Native Oxide double-layer gate insulators. IEEE Transactions on Electron Devices, 1984, 31, 1038-1043.	1.6	34
713	A Feasibility Study of the Catalytic Reduction Method For Tritium Recovery from Tritiated Water Tritium Systems. Nuclear Technology/Fusion, 1984, 5, 178-188.	0.5	25
714	Surface electrical breakdown with white-light emission on semi-insulating GaAs substrates. Electronics Letters, 1984, 20, 561.	0.5	10
715	Effect of tangential magnetic field on the two-dimensional electron transport in Nî—¸AlGaAs/GaAs superlattices and hetero-interfaces. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 117-118, 703-705.	0.9	1
716	Electrical and optical characteristics of InP enhancement mode metal/insulator/semiconductor field effect transistors with a novel anodic double-layer gate insulator. Thin Solid Films, 1983, 103, 107-117.	0.8	9
717	Conductivities of a sintered pellet and a single crystal of Li2O. Journal of Nuclear Materials, 1983, 118, 242-247.	1.3	30
718	Anodic oxide gate a-Si:H MOSFET. Electronics Letters, 1983, 19, 607.	0.5	11
719	Influence of Substrate Temperature on the Growth of AlGaAs/GaAs Quantum Well Heterostructures by Organometallic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1983, 22, L639-L641.	0.8	8
720	Decomposition of Tritiated Water With Solid Oxide Electrolysis Cell. Nuclear Technology/Fusion, 1983, 3, 195-198.	0.5	19

#	Article	lF	Citations
721	Anodic oxidation of a-Si:H films. Electronics Letters, 1983, 19, 6.	0.5	6
722	a-Si:H MIS position sensitive detector by anodic oxidation processes. Electronics Letters, 1983, 19, 628.	0.5	11
723	Dependence of electron mobility on spacer thickness and electron density in modulation-doped Ga0.47In0.53As/Al0.48In0.52As heterojunctions. Electronics Letters, 1983, 19, 160.	0.5	11
724	Magnetophonon Resonance in a Two-Dimensional Electron System in the GaAs–AlxGa1-xAs Heterojunction Interface. Journal of the Physical Society of Japan, 1982, 51, 2168-2173.	0.7	59
725	Non-Destructive Determination of Cr Concentration Distribution in Cr Doped Semi-Insulating GaAs Substrates. Japanese Journal of Applied Physics, 1982, 21, L786-L788.	0.8	7
726	A New AlGaAs/GaAs Heterojunction FET with Insulated Gate Structure (MISSFET). Japanese Journal of Applied Physics, 1982, 21, L122-L124.	0.8	23
727	InGaAs enhancement-mode MISFETs using double-layer gate insulator. Electronics Letters, 1982, 18, 1034.	0.5	11
728	Tangential magnetoresistance of twoâ€dimensional electron gas at a selectively dopednâ€GaAlAs/GaAs heterojunction interface grown by molecular beam epitaxy. Applied Physics Letters, 1982, 40, 893-895.	1.5	14
729	Optical quality GalnAs grown by molecular beam epitaxy. Journal of Electronic Materials, 1982, 11, 435-440.	1.0	19
730	GalnAsâ€AlInAs structures grown by molecular beam epitaxy. Journal of Applied Physics, 1981, 52, 4033-4037.	1.1	81
731	High-speed photoconductive detectors using GalnAs. IEEE Journal of Quantum Electronics, 1981, 17, 269-272.	1.0	32
732	Integrated double heterostructure Ga _{0.47} In _{0.53} As photoreceiver with automatic gain control. IEEE Electron Device Letters, 1981, 2, 7-9.	2.2	31
733	Characterisation of Al/AlInAs/GalnAs heterostructures. IEE Proceedings I: Solid State and Electron Devices, 1981, 128, 141.	0.1	1
734	On the origin and elimination of macroscopic defects in MBE films. Journal of Crystal Growth, 1981, 51, 299-303.	0.7	91
735	Channeling analysis of MBE InAlAs/InGaAs interfaces. Journal of Vacuum Science and Technology, 1981, 19, 596-598.	1.9	3
736	Ion Beam Analysis of Molecular Beam Epitaxy InAlAs / InGaAs Layer Structures. Journal of the Electrochemical Society, 1981, 128, 2419-2424.	1.3	10
737	Schottky-Barrier Properties of Nearly-Ideal ($n\hat{a}\%f1$) Al Contacts on MBE- and Heat Cleaned-GaAs Surfaces. Japanese Journal of Applied Physics, 1981, 20, L107-L110.	0.8	8
738	TA-B5 short transit-time photoconductive detectors for high-speed optical communications. IEEE Transactions on Electron Devices, 1980, 27, 2187-2187.	1.6	0

#	Article	IF	CITATIONS
739	WA-B8 Double-heterostructure Ga _{0.47} In _{0.53} As MESFET's. IEEE Transactions on Electron Devices, 1980, 27, 2198-2198.	1.6	O
740	Double heterostructure Ga _{0.47} In _{0.53} As MESFETs by MBE. IEEE Electron Device Letters, 1980, 1, 154-155.	2.2	51
741	Phase Diagram of Ternary RbF-PbF2-BiF3System as Target Salt in Accelerator Molten-Salt Breeder Reactor. Journal of Nuclear Science and Technology, 1980, 17, 562-563.	0.7	5
742	Double heterojunction GalnAs devices by MBE. , 1980, , .		5
743	Double heterostructure Ga _{0.47} In _{0.53} As MESFETs with submicron gates. IEEE Electron Device Letters, 1980, 1, 174-176.	2.2	29
744	Arsenic stabilization of InP substrates for growth of GaxIn1â^xAs layers by molecular beam epitaxy. Applied Physics Letters, 1980, 37, 290-292.	1.5	106
745	Thermal conversion mechanism in semiâ€insulating GaAs. Journal of Applied Physics, 1979, 50, 8226-8228.	1.1	6
746	Self-diffusion of lithium in molten LiBeF3 and Li2BeF4. Journal of the Chemical Society, Faraday Transactions 2, 1979, 75, 1277.	1.1	10
747	Establishment of Corresponding-state Principle in Molten Fluoroberyllates and Silicates and Its Application. Transactions of the Japan Institute of Metals, 1978, 19, 553-561.	0.5	10
748	Establishment of Corresponding-State Principle to Molten Fluoro-beryllates and Silicates and its Application. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1977, 41, 450-457.	0.2	2
749	Self-diffusion Coefficients of Fluorine in Molten LiF-BeF ₂ Mixture System. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1977, 41, 391-396.	0.2	1
750	Self-diffusion of fluorine in molten dilithium tetrafluoroberyllate. The Journal of Physical Chemistry, 1976, 80, 1628-1631.	2.9	22
751	Antiferromagnetism in hcp Iron-Ruthenium and hcp Iron-Osmium Alloys. Journal of the Physical Society of Japan, 1971, 31, 92-101.	0.7	50
752	Antiferromagnetism in hcp Iron-Manganese Alloys. Journal of the Physical Society of Japan, 1971, 31, 102-108.	0.7	71
7 53	Antiferromagnetism of Dilute Cr Alloys with Co and Ni. Journal of the Physical Society of Japan, 1968, 24, 263-270.	0.7	54
754	Magnetic Properties of the hcp Iron-Ruthenium Alloys. Journal of the Physical Society of Japan, 1968, 25, 283-283.	0.7	6
755	Electrical Resistivity of Chromium Alloys. Journal of the Physical Society of Japan, 1967, 23, 251-254.	0.7	16
756	Spin-orbit interaction of $2\hat{A}^o$ in InAlAS/InAs heterostructures. , 0, , .		0

#	Article	IF	CITATIONS
757	Spin-polarized electron injection from ferromagnet into semiconductor. , 0, , .		О
758	Spin injection from a ferromagnetic electrode into InAs surface inversion layer. , 0, , .		1
759	Spin injection from a ferromagnetic metal into a semiconductor without a tunneling barrier. , 0, , .		0
760	Electrical Magnetization Reversal in Ferromagnetic Semiconductors., 0,,.		0
761	Mid-infrared InAs-based quantum cascade lasers. , 0, , .		0
762	Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions. Applied Physics Express, 0, 1, 091301.	1.1	302
763	Standby-Power-Free Compact Ternary Content-Addressable Memory Cell Chip Using Magnetic Tunnel Junction Devices. Applied Physics Express, 0, 2, 023004.	1.1	73
764	Beyond MRAM: Nonvolatile Logic-in-Memory VLSI. , 0, , 199-230.		1