Tsan Sam Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2245193/publications.pdf

Version: 2024-02-01

68 papers

10,498 citations

36 h-index 65 g-index

70 all docs

70 docs citations

times ranked

70

14616 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Gasdermin Recognition by Proteases. Journal of Molecular Biology, 2022, 434, 167274.	4.2	12
2	TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nature Communications, 2022, 13, 2406.	12.8	13
3	Trimeric receptor-binding domain of SARS-CoV-2 acts as a potent inhibitor of ACE2 receptor-mediated viral entry. IScience, 2022, 25, 104716.	4.1	6
4	Epithelial–Mesenchymal Transition Suppresses AMPK and Sensitizes Cancer Cells to Pyroptosis under Energy Stress. Cells, 2022, 11, 2208.	4.1	2
5	Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Research, 2021, 49, 2959-2972.	14.5	11
6	Partners with a killer: Metabolic signaling promotes inflammatory cell death. Cell, 2021, 184, 4374-4376.	28.9	11
7	Caspase-1 Engages Full-Length Gasdermin D through Two Distinct Interfaces That Mediate Caspase Recruitment and Substrate Cleavage. Immunity, 2020, 53, 106-114.e5.	14.3	106
8	LATS kinase–mediated CTCF phosphorylation and selective loss of genomic binding. Science Advances, 2020, 6, eaaw4651.	10.3	21
9	Function of Auxiliary Domains of the DEAH/RHA Helicase DHX36 in RNA Remodeling. Journal of Molecular Biology, 2020, 432, 2217-2231.	4.2	11
10	Human polymorphisms in GSDMD alter the inflammatory response. Journal of Biological Chemistry, 2020, 295, 3228-3238.	3.4	24
11	Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-viral Immunity. Immunity, 2020, 52, 767-781.e6.	14.3	175
12	Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization. Immunity, 2019, 51, 43-49.e4.	14.3	151
13	Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin Dâ€derived peptide inhibitor. FASEB Journal, 2019, 33, 461.24.	0.5	O
14	The G-quadruplex (G4) resolvase DHX36 efficiently and specifically disrupts DNA G4s via a translocation-based helicase mechanism. Journal of Biological Chemistry, 2018, 293, 1924-1932.	3.4	31
15	Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition. Structure, 2018, 26, 778-784.e3.	3.3	63
16	Phosphorylation of the E3 ubiquitin protein ligase ITCH diminishes binding to its cognate E2 ubiquitin ligase. Journal of Biological Chemistry, 2018, 293, 1100-1105.	3.4	25
17	Functional and structural characterization of zebrafish ASC. FEBS Journal, 2018, 285, 2691-2707.	4.7	25
18	Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Science Immunology, 2018, 3 , .	11.9	369

#	Article	IF	CITATIONS
19	Crystal structure of human NLRP12 PYD domain and implication in homotypic interaction. PLoS ONE, 2018, 13, e0190547.	2.5	9
20	Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6792-6797.	7.1	119
21	Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a471-a471.	0.1	1
22	Post-translational regulation of inflammasomes. Cellular and Molecular Immunology, 2017, 14, 65-79.	10.5	155
23	Design of an expression system to enhance MBP-mediated crystallization. Scientific Reports, 2017, 7, 40991.	3.3	38
24	Live-cell visualization of gasdermin D-driven pyroptotic cell death. Journal of Biological Chemistry, 2017, 292, 14649-14658.	3 . 4	55
25	Innate immunity and inflammation. Cellular and Molecular Immunology, 2017, 14, 1-3.	10.5	117
26	A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli. Pathogens, 2016, 5, 25.	2.8	14
27	RAGE Enhances TLR Responses through Binding and Internalization of RNA. Journal of Immunology, 2016, 197, 4118-4126.	0.8	51
28	Polyglutamine Tract Expansion Increases S-Nitrosylation of Huntingtin and Ataxin-1. PLoS ONE, 2016, 11, e0163359.	2.5	7
29	Structural Mechanisms of Nucleosome Recognition by Linker Histones. Molecular Cell, 2015, 59, 628-638.	9.7	191
30	Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5455-5460.	7.1	124
31	The nucleic acidâ€sensing inflammasomes. Immunological Reviews, 2015, 265, 103-111.	6.0	63
32	Assembling the wheel of death. Science, 2015, 350, 376-377.	12.6	0
33	Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nature Immunology, 2015, 16, 1025-1033.	14.5	202
34	Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 151-156.	4.9	15
35	Crystal Structures of the Toll/Interleukin-1 Receptor (TIR) Domains from the Brucella Protein TcpB and Host Adaptor TIRAP Reveal Mechanisms of Molecular Mimicry. Journal of Biological Chemistry, 2014, 289, 669-679.	3.4	66
36	Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Current Opinion in Immunology, 2014, 26, 14-20.	5 . 5	28

#	Article	IF	Citations
37	The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone for the H2A.Z-H2B Dimer. Molecular Cell, 2014, 53, 498-505.	9.7	71
38	Free IL-12p40 Monomer Is a Polyfunctional Adaptor for Generating Novel IL-12–like Heterodimers Extracellularly. Journal of Immunology, 2014, 192, 6028-6036.	0.8	42
39	The cGAS-STING Pathway for DNA Sensing. Molecular Cell, 2013, 51, 135-139.	9.7	135
40	Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspaseâ€1. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1266-1270.	2.6	58
41	Activation and regulation of the inflammasomes. Nature Reviews Immunology, 2013, 13, 397-411.	22.7	2,373
42	Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6985-6990.	7.1	77
43	The structure of the CARD8 caspase-recruitment domain suggests its association with the FIIND domain and procaspases through adjacent surfaces. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 482-487.	0.7	14
44	Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 855-860.	0.7	14
45	A Conserved Mechanism for Centromeric Nucleosome Recognition by Centromere Protein CENP-C. Science, 2013, 340, 1110-1113.	12.6	290
46	IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4571-80.	7.1	285
47	RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. Journal of Experimental Medicine, 2013, 210, 2447-2463.	8.5	177
48	Structure of the Absent in Melanoma 2 (AIM2) Pyrin Domain Provides Insights into the Mechanisms of AIM2 Autoinhibition and Inflammasome Assembly. Journal of Biological Chemistry, 2013, 288, 13225-13235.	3.4	138
49	Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. Journal of Immunology, 2013, 190, 5216-5225.	0.8	334
50	Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. Immunity, 2012, 36, 561-571.	14.3	456
51	NLRX1 Has a Tail to Tell. Immunity, 2012, 36, 311-312.	14.3	14
52	Two Distinct Binding Modes Define the Interaction of Brox with the C-Terminal Tails of CHMP5 and CHMP4B. Structure, 2012, 20, 887-898.	3.3	23
53	The Phe105 Loop of Alix Bro1 Domain Plays a Key Role in HIV-1 Release. Structure, 2011, 19, 1485-1495.	3.3	30
54	Subversion of Innate Immune Signaling Through Molecular Mimicry. Journal of Clinical Immunology, 2010, 30, 638-642.	3.8	13

#	Article	IF	Citations
55	IFI16 is an innate immune sensor for intracellular DNA. Nature Immunology, 2010, 11, 997-1004.	14.5	1,369
56	Innate immune recognition of nucleic acids. Immunologic Research, 2009, 43, 98-108.	2.9	21
57	Structure of a Complete Integrin Ectodomain in a Physiologic Resting State and Activation and Deactivation by Applied Forces. Molecular Cell, 2008, 32, 849-861.	9.7	429
58	218 Mechanism of TOLL/IL-1 receptor domain dimerization and signaling revealed by a crystal structure of the MYD88. Cytokine, 2008, 43, 291.	3.2	0
59	Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. Journal of Cell Biology, 2008, 182, 791-800.	5.2	205
60	The integrin Â-subunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15422-15427.	7.1	59
61	Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature, 2004, 432, 59-67.	27.8	762
62	The Relative Influence of Metal Ion Binding Sites in the I-like Domain and the Interface with the Hybrid Domain on Rolling and Firm Adhesion by Integrin $\hat{l}\pm4\hat{l}^2$ 7. Journal of Biological Chemistry, 2004, 279, 55556-55561.	3.4	43
63	Crystal Structure of the Integrin αIIBβ3 Headpiece at 2.7–3.1 Å: Structure, Mechanisms of Activation and Ligand Binding, Inhibition by Eptifibatide, Tirofiban, and mAb 10E5, and Structure of the HPA-1 Alloantigen Epitope Blood, 2004, 104, 327-327.	1.4	0
64	Structures of the $\hat{l}\pm L$ I Domain and Its Complex with ICAM-1 Reveal a Shape-Shifting Pathway for Integrin Regulation. Cell, 2003, 112, 99-111.	28.9	499
65	Cosolvent-induced transformation of a death domain tertiary structure. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11151-11156.	7.1	11
66	Stabilizing the integrin ÂM inserted domain in alternative conformations with a range of engineered disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16737-16741.	7.1	58
67	Structure of a rat α ₁ â€macroglobulin receptorâ€binding domain dimer. Protein Science, 2000, 9, 1889-1897.	7.6	18
68	Three-Dimensional Structure of a Complex between the Death Domains of Pelle and Tube. Cell, 1999, 99, 545-555.	28.9	167