Xiaoli Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2243811/publications.pdf Version: 2024-02-01

Хилон Снаг

#	Article	IF	CITATIONS
1	Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Research, 2020, 180, 115912.	11.3	343
2	Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation. Bioresource Technology, 2012, 116, 259-265.	9.6	225
3	Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Science of the Total Environment, 2018, 634, 195-204.	8.0	197
4	Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge. Environmental Science & Technology, 2017, 51, 9235-9243.	10.0	174
5	Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation. Bioresource Technology, 2012, 119, 7-14.	9.6	158
6	Methane emissions as energy reservoir: Context, scope, causes and mitigation strategies. Progress in Energy and Combustion Science, 2016, 56, 33-70.	31.2	92
7	Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger. Chemical Engineering Journal, 2018, 345, 640-647.	12.7	67
8	PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria. Chemosphere, 2018, 197, 96-104.	8.2	56
9	Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chemical Engineering Journal, 2017, 328, 35-43.	12.7	51
10	Characterization of coal gasification slag-based activated carbon and its potential application in lead removal. Environmental Technology (United Kingdom), 2018, 39, 382-391.	2.2	43
11	Unraveling the water states of waste-activated sludge through transverse spin-spin relaxation time of low-field NMR. Water Research, 2019, 155, 266-274.	11.3	43
12	Mechanism insights into bio-floc bound water transformation based on synchrotron X-ray computed microtomography and viscoelastic acoustic response analysis. Water Research, 2018, 142, 480-489.	11.3	42
13	Enhanced dewatering of waste-activated sludge by composite hydrolysis enzymes. Bioprocess and Biosystems Engineering, 2016, 39, 627-639.	3.4	40
14	Development of montmorillonite-supported nano CaO2 for enhanced dewatering of waste-activated sludge by synergistic effects of filtration aid and peroxidation. Chemical Engineering Journal, 2017, 307, 418-426.	12.7	39
15	Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization. Frontiers of Environmental Science and Engineering, 2014, 8, 267-276.	6.0	38
16	Influential mechanism of water occurrence states of waste-activated sludge: Potential linkage between water-holding capacity and molecular compositions of EPS. Water Research, 2022, 213, 118169.	11.3	34
17	Exploring the potential of iTRAQ proteomics for tracking the transformation of extracellular proteins from enzyme-disintegrated waste activated sludge. Bioresource Technology, 2017, 225, 75-83.	9.6	32
18	The use of the core–shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion. Environmental Sciences: Processes and Impacts, 2015, 17, 2013-2021.	3.5	31

XIAOLI CHAI

#	Article	IF	CITATIONS
19	Emission characteristics and air–surface exchange of gaseous mercury at the largest active landfill in Asia. Atmospheric Environment, 2013, 79, 188-197.	4.1	30
20	Influential mechanism of water occurrence states of waste-activated sludge: specifically focusing on the roles of EPS micro-spatial distribution and cation-dominated interfacial properties. Water Research, 2021, 202, 117461.	11.3	29
21	Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective. Journal of Environmental Sciences, 2015, 30, 173-179.	6.1	27
22	Novel insights into enhanced dewatering of waste activated sludge based on the durable and efficacious radical generating. Journal of the Air and Waste Management Association, 2016, 66, 1151-1163.	1.9	27
23	Mercury emission to the atmosphere from municipal solid waste landfills: A brief review. Atmospheric Environment, 2017, 170, 303-311.	4.1	27
24	Development of sludge-derived mesoporous material with loaded nano CaO2 and doped Fe for re-utilization of dewatered waste-activated sludge as dewatering aids. Chemical Engineering Journal, 2018, 335, 161-168.	12.7	26
25	Free-conditioning dewatering of sewage sludge through in situ propane hydrate formation. Water Research, 2018, 145, 464-472.	11.3	25
26	Site specific diel methane emission mechanisms in landfills: A field validated process based on vegetation and climate factors. Environmental Pollution, 2016, 218, 673-680.	7.5	24
27	Hybrid cement-assisted dewatering, solidification and stabilization of sewage sludge with high organic content. Journal of Material Cycles and Waste Management, 2016, 18, 356-365.	3.0	24
28	Development of polymeric iron/zirconium-pillared clinoptilolite for simultaneous removal of multiple inorganic contaminants from wastewater. Chemical Engineering Journal, 2018, 347, 819-827.	12.7	21
29	Implications of municipal solid waste disposal methods in China on greenhouse gas emissions. Environmental Progress and Sustainable Energy, 2020, 39, e13372.	2.3	21
30	A Simulation model for estimating methane oxidation and emission from landfill cover soils. Waste Management, 2018, 77, 426-434.	7.4	20
31	Effect of temperature on tertiary nitrogen removal from municipal wastewater in a PHBV/PLA-supported denitrification system. Environmental Science and Pollution Research, 2019, 26, 26893-26899.	5.3	19
32	Numerical modeling of methane oxidation and emission from landfill cover soil coupling water-heat-gas transfer: Effects of meteorological factors. Chemical Engineering Research and Design, 2021, 146, 647-655.	5.6	17
33	Ecosystem activation system (EAS) technology for remediation of eutrophic freshwater. Scientific Reports, 2017, 7, 4818.	3.3	15
34	Human health risk assessment of heavy metals in a replaced urban industrial area of Qingdao, China. Environmental Monitoring and Assessment, 2016, 188, 229.	2.7	14
35	NaHCO ₃ -enhanced sewage sludge thin-layer drying: Drying characteristics and kinetics. Drying Technology, 2017, 35, 1276-1287.	3.1	14
36	Greenhouse gas emission and its potential mitigation process from the waste sector in a large-scale exhibition. Journal of Environmental Sciences, 2015, 31, 44-50.	6.1	11

XIAOLI CHAI

#	Article	IF	CITATIONS
37	A simulation model for methane emissions from landfills with interaction of vegetation and cover soil. Waste Management, 2018, 71, 267-276.	7.4	11
38	Novel micro-granular sludge process for highly efficient treatment of low-strength and low C/N ratio municipal wastewater. Chemosphere, 2022, 287, 132322.	8.2	11
39	Site-specific diel mercury emission fluxes in landfill: Combined effects of vegetation and meteorological factors. Waste Management, 2017, 59, 247-254.	7.4	10
40	Influential mechanism of water occurrence states of waste-activated sludge: Over-focused significance of cell lysis to bound water reduction. Water Research, 2022, 221, 118737.	11.3	10
41	Mechanism insights into polyhydroxyalkanoate-regulated denitrification from the perspective of pericytoplasmic nitrate reductase expression. Science of the Total Environment, 2021, 754, 142083.	8.0	9
42	Environmentally-friendly dewatering of sewage sludge: A novel strategy based on amphiphilic phase-transfer induced by recoverable organic solvent. Chemical Engineering Journal, 2021, 409, 128212.	12.7	9
43	Effects of plant radial oxygen loss on methane oxidation in landfill cover soil: A simulative study. Waste Management, 2020, 102, 56-64.	7.4	8
44	Effects of Water Level Fluctuations on the Growth Characteristics and Community Succession of Submerged Macrophytes: A Case Study of Yilong Lake, China. Water (Switzerland), 2021, 13, 2900.	2.7	8
45	Simulative analysis of vegetation on CH4 emission from landfill cover soils: Combined effects of root-water uptake, root radial oxygen loss, and plant-mediated CH4 transport. Journal of Cleaner Production, 2019, 234, 18-26.	9.3	7
46	Mechanism insights into liquid polarity regulation for enhanced dewatering of waste-activated sludge: Specifically focusing on the solid-liquid affinity reduction depending on phase-transfer and conformational features of amphiphilic protein. Water Research, 2022, 221, 118793.	11.3	7
47	Mercury transport and fate in municipal solid waste landfills and its implications. Biogeochemistry, 2020, 148, 19-29.	3.5	6
48	Designing an in situ remediation strategy for polluted surface water bodies through the specific regulation of microbial community. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	5
49	Co-immobilization of clinoptilolite and nanostructured hydrated ferric-zirconium binary oxide via polyvinyl alcohol-alginate covalent cross-linking for simultaneous deep removal of aqueous low-level nitrogen and phosphorus. Arabian Journal of Chemistry, 2021, 14, 103354.	4.9	5
50	Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill. Frontiers of Environmental Science and Engineering, 2014, 8, 405-410.	6.0	4
51	Highly efficient solid-liquid separation of anaerobically digested liquor of food waste: Conditioning approach screening and mechanistic analysis. Science of the Total Environment, 2022, 811, 152416.	8.0	4
52	Sequestration of Sulphide from Biogas by thermal-treated iron nanoparticles synthesized using tea polyphenols. Environmental Technology (United Kingdom), 2020, 41, 741-750.	2.2	1