
Wolfgang Nentwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2242508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
2	How well do we understand the impacts of alien species on ecosystem services? A panâ€European, crossâ€ŧaxa assessment. Frontiers in Ecology and the Environment, 2010, 8, 135-144.	4.0	870
3	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	5.6	648
4	Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 203-207.	7.1	442
5	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	7.1	416
6	Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 2017, 1, .	7.8	315
7	Will Threat of Biological Invasions Unite the European Union?. Science, 2009, 324, 40-41.	12.6	279
8	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	5.2	244
9	More than "100 worst―alien species in Europe. Biological Invasions, 2018, 20, 1611-1621.	2.4	200
10	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	4.1	184
11	Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography, 2010, 19, 317-331.	5.8	154
12	A Generic Impactâ€Scoring System Applied to Alien Mammals in Europe. Conservation Biology, 2010, 24, 302-311.	4.7	141
13	Developing a framework of minimum standards for the risk assessment of alien species. Journal of Applied Ecology, 2018, 55, 526-538.	4.0	141
14	Venom Composition and Strategies in Spiders. Advances in Insect Physiology, 2011, 40, 1-86.	2.7	121
15	Comparing impacts of alien plants and animals in <scp>E</scp> urope using a standard scoring system. Journal of Applied Ecology, 2015, 52, 552-561.	4.0	116
16	The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon, 2002, 40, 749-752.	1.6	104
17	Contrasting responses of arable spiders to the landscape matrix at different spatial scales. Journal of Biogeography, 2008, 35, 157-166.	3.0	103
18	Some alien birds have as severe an impact as the most effectual alien mammals in Europe. Biological Conservation, 2010, 143, 2757-2762.	4.1	96

WOLFGANG NENTWIG

#	Article	IF	CITATIONS
19	Cupiennin 1, a New Family of Highly Basic Antimicrobial Peptides in the Venom of the Spider Cupiennius salei(Ctenidae). Journal of Biological Chemistry, 2002, 277, 11208-11216.	3.4	95
20	The generic impact scoring system (CISS): a standardized tool to quantify the impacts of alien species. Environmental Monitoring and Assessment, 2016, 188, 315.	2.7	88
21	Body size–climate relationships of European spiders. Journal of Biogeography, 2010, 37, 477-485.	3.0	83
22	Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon, 2004, 43, 543-553.	1.6	81
23	Alien spider introductions to Europe supported by global trade. Diversity and Distributions, 2008, 14, 273-280.	4.1	80
24	Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biological Invasions, 2016, 18, 3697-3711.	2.4	71
25	Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins, 2019, 11, 611.	3.4	71
26	Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae:Ctenidae). Toxicon, 1994, 32, 287-302.	1.6	66
27	Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. BioControl, 2013, 58, 73-83.	2.0	59
28	Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?. NeoBiota, 0, 32, 1-20.	1.0	58
29	Introduction, establishment rate, pathways and impact of spiders alien to Europe. Biological Invasions, 2015, 17, 2757-2778.	2.4	53
30	The role of nonâ€native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Global Ecology and Biogeography, 2010, 19, 332-342.	5.8	52
31	Distribution and medical aspects of Loxosceles rufescens , one of the most invasive spiders of the world (Araneae: Sicariidae). Toxicon, 2017, 132, 19-28.	1.6	49
32	Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecology of Freshwater Fish, 2015, 24, 646-656.	1.4	47
33	Spider venom: enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. Journal of Experimental Biology, 2005, 208, 2115-2121.	1.7	45
34	Consistency of impact assessment protocols for non-native species. NeoBiota, 0, 44, 1-25.	1.0	45
35	Assessing the assessments: evaluation of four impact assessment protocols for invasive alien species. Diversity and Distributions, 2017, 23, 297-307.	4.1	44
36	Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids, 2011, 40, 69-76.	2.7	42

#	Article	IF	CITATIONS
37	CSTX-13, a highly synergistically acting two-chain neurotoxic enhancer in the venom of the spider Cupiennius salei (Ctenidae). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11251-11256.	7.1	40
38	A two year study of verified spider bites in Switzerland and a review of the European spider bite literature. Toxicon, 2013, 73, 104-110.	1.6	38
39	CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons. Neuropharmacology, 2007, 52, 1650-1662.	4.1	35
40	A Venom-derived Neurotoxin, CsTx-1, from the Spider Cupiennius salei Exhibits Cytolytic Activities. Journal of Biological Chemistry, 2012, 287, 25640-25649.	3.4	35
41	The Dual Prey-Inactivation Strategy of Spiders—In-Depth Venomic Analysis of Cupiennius salei. Toxins, 2019, 11, 167.	3.4	35
42	Environmental and economic impact of alien terrestrial arthropods in Europe. NeoBiota, 0, 22, 23-42.	1.0	35
43	Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change?. Climatic Change, 2011, 109, 319-329.	3.6	32
44	The World Spider Trait database: a centralized global open repository for curated data on spider traits. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	30
45	Hunting Without a Web: How Lycosoid Spiders Subdue their Prey. Ethology, 2015, 121, 1166-1177.	1.1	29
46	Alien aquatics in Europe: assessing the relative environmental and socio-economic impacts of invasive aquatic macroinvertebrates and other taxa. Management of Biological Invasions, 2015, 6, 341-350.	1.2	29
47	Cupiennin 1d*: the cytolytic activity depends on the hydrophobic N-terminus and is modulated by the polar C-terminus. FEBS Letters, 2002, 527, 193-198.	2.8	28
48	Multicomponent venom of the spider <i>Cupiennius salei</i> : a bioanalytical investigation applying different strategies. FEBS Journal, 2012, 279, 2683-2694.	4.7	27
49	A lysine rich C-terminal tail is directly involved in the toxicity of CSTX-1, a neurotoxic peptide from the venom of the spiderCupiennius salei. Archives of Insect Biochemistry and Physiology, 2000, 44, 101-111.	1.5	25
50	Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE, 2017, 12, e0172966.	2.5	25
51	Functional differentiation of spider hemocytes by light and transmission electron microscopy, and MALDI-MS-imaging. Developmental and Comparative Immunology, 2014, 43, 59-67.	2.3	23
52	Identification of a precursor processing protease from the spider Cupiennius salei essential for venom neurotoxin maturation. Journal of Biological Chemistry, 2018, 293, 2079-2090.	3.4	23
53	Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei. PLoS ONE, 2015, 10, e0143963.	2.5	23
54	A verified spider bite and a review of the literature confirm Indian ornamental tree spiders (Poecilotheria species) as underestimated theraphosids of medical importance. Toxicon, 2014, 77, 73-77.	1.6	22

WOLFGANG NENTWIG

#	Article	IF	CITATIONS
55	Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe. Global Change Biology, 2020, 26, 6235-6250.	9.5	22
56	Spatial aspects of trait homogenization within the German flora. Journal of Biogeography, 2008, 35, 2289-2297.	3.0	21
57	Expression of defensins in non-infected araneomorph spiders. Cellular and Molecular Life Sciences, 2010, 67, 2643-2651.	5.4	20
58	Weak or strong invaders? A comparison of impact between the native and invaded ranges of mammals and birds alien to Europe. Diversity and Distributions, 2011, 17, 663-672.	4.1	20
59	Glossary of the Main Technical Terms Used in the Handbook. , 2009, , 375-379.		19
60	Towards establishment of a centralized spider traits database. Journal of Arachnology, 2020, 48, .	0.5	18
61	How informative are case studies of spider bites in the medical literature?. Toxicon, 2016, 114, 40-44.	1.6	17
62	Purification, cDNA structure and biological significance of a single insulin-like growth factor-binding domain protein (SIBD-1) identified in the hemocytes of the spider Cupiennius salei. Insect Biochemistry and Molecular Biology, 2011, 41, 891-901.	2.7	16
63	Combining morphology, DNA sequences, and morphometrics: revising closely related species in the orb-weaving spider genus Araniella (Araneae,) Tj ETQq1	1 0.7843 b4 5rgBT	/Overlock 1
64	Progress in erigonine spider phylogeny—the Savignia-group is not monophyletic (Araneae: Linyphiidae). Organisms Diversity and Evolution, 2010, 10, 297-310.	1.6	15
65	The burrow system of the common vole (<i>M. arvalis</i> , Rodentia) in Switzerland. Mammalia, 2010, 74, 311-315.	0.7	15
66	Spiders (Araneae). Chapter 7.3. BioRisk, 0, 4, 131-147.	0.2	14
67	Impact of Non-native Animals and Plants on Human Health. , 2017, , 277-293.		14
68	Spider Venoms Potentially Lethal to Humans. , 2013, , 253-264.		13
69	Determinants of local ant (Hymenoptera: Formicidae) species richness and activity density across Europe. Ecological Entomology, 2009, 34, 748-754.	2.2	12
70	Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects. Toxins, 2020, 12, 250.	3.4	11
71	Control of <i>Impatiens glandulifera</i> (Balsaminaceae) by Antagonists in its Invaded Range. Invasive Plant Science and Management, 2008, 1, 352-358.	1.1	9
72	How to find a needle in a haystack - host plant finding of the weevil Ceratapion onopordi. Entomologia Experimentalis Et Applicata, 2011, 139, 68-74.	1.4	9

WOLFGANG NENTWIG

#	Article	IF	CITATIONS
73	How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae). Arachnologische Mitteilungen, 2020, 59, 22.	0.3	9
74	Establishing systemic rust infections in <i>Cirsium arvense</i> in the field. Biocontrol Science and Technology, 2008, 18, 209-214.	1.3	7
75	The new Southeast Asian goblin spider genus Aposphragisma (Araneae, Oonopidae): diversity and phylogeny . Zootaxa, 2014, 3798, 1.	0.5	7
76	Does feeding onBt-maize affect the slugArion vulgaris(Mollusca: Arionidae)?. Biocontrol Science and Technology, 2010, 20, 13-18.	1.3	5
77	Response to Strubbe et al. (2011): Impact scoring of invasive birds is justified. Biological Conservation, 2011, 144, 2747.	4.1	5
78	A tropical caterpillar that mimics faeces, leaves and a snake (Lepidoptera: Oxytenidae: Oxytenis naemia). The Journal of Research on the Lepidoptera, 1985, 24, 136-141.	0.1	5
79	Diversity and origin of the spider fauna of the Indian Ocean islands. , 2019, 18, 172.		4
80	Linear Peptides—A Combinatorial Innovation in the Venom of Some Modern Spiders. Frontiers in Molecular Biosciences, 2021, 8, 705141.	3.5	2
81	Response—A Standardized Response to Biological Invasions. Science, 2009, 325, 146-147.	12.6	1