
Angel Ashikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2241061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology, 2022, 32, 239-250.	2.5	15
2	Synergistic use of glycomics and singleâ€molecule molecular inversion probes for <scp>identification</scp> of congenital disorders of glycosylation typeâ€1. Journal of Inherited Metabolic Disease, 2022, 45, 769-781.	3.6	7
3	Active site variants in STT3A cause a dominant type I congenital disorder of glycosylation with neuromusculoskeletal findings. American Journal of Human Genetics, 2021, 108, 2130-2144.	6.2	5
4	Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. Nature Communications, 2021, 12, 6227.	12.8	14
5	Mutations in the Vâ€ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease. Hepatology, 2020, 72, 1968-1986.	7.3	32
6	Cytidine Diphosphate-Ribitol Analysis for Diagnostics and Treatment Monitoring of Cytidine Diphosphate-l-Ribitol Pyrophosphorylase A Muscular Dystrophy. Clinical Chemistry, 2019, 65, 1295-1306.	3.2	11
7	Activity of N-acylneuraminate-9-phosphatase (NANP) is not essential for de novo sialic acid biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1471-1479.	2.4	18
8	A mutation in mannoseâ€phosphateâ€dolichol utilization defect 1 reveals clinical symptoms of congenital disorders of glycosylation type I and dystroglycanopathy. JIMD Reports, 2019, 50, 31-39.	1.5	14
9	Clinical, neuroradiological, and biochemical features of SLC35A2â€CDG patients. Journal of Inherited Metabolic Disease, 2019, 42, 553-564.	3.6	32
10	TNF-α–induced protein 3 (TNFAIP3) /A20 acts as a master switch in TNF-α blockade–driven IL-17A expressic Journal of Allergy and Clinical Immunology, 2018, 142, 517-529.	^{n.} 2.9	52
11	Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Human Molecular Genetics, 2018, 27, 3029-3045.	2.9	37
12	Effects of a human recombinant alkaline phosphatase during impaired mitochondrial function in human renal proximal tubule epithelial cells. European Journal of Pharmacology, 2017, 796, 149-157.	3.5	9
13	Cryptococcus neoformans UGT1encodes a UDP-Galactose/UDP-GalNAc transporter. Glycobiology, 2017, 27, 87-98.	2.5	20
14	NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nature Genetics, 2016, 48, 777-784.	21.4	125
15	ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nature Communications, 2016, 7, 11600.	12.8	110
16	CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. American Journal of Human Genetics, 2016, 98, 310-321.	6.2	88
17	TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. American Journal of Human Genetics, 2016, 98, 322-330.	6.2	73
18	Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation. Chemistry and Biology, 2015, 22, 1643-1652.	6.0	67

Angel Ashikov

#	Article	IF	CITATIONS
19	Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal Â-dystroglycan O-mannosylation, independent from sialic acid. Human Molecular Genetics, 2015, 24, 2241-2246.	2.9	31
20	Sialic Acid Glycoengineering Using an Unnatural Sialic Acid for the Detection of Sialoglycan Biosynthesis Defects and On-Cell Synthesis of Siglec Ligands. ACS Chemical Biology, 2015, 10, 2353-2363.	3.4	38
21	<i>Arabidopsis</i> ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 291-296.	7.1	45
22	Structure and function of nucleotide sugar transporters: Current progress. Computational and Structural Biotechnology Journal, 2014, 10, 23-32.	4.1	91
23	UDP-Xylose and UDP-N-Acetylglucosamine Transporter (SLC35B4). , 2014, , 1393-1402.		Ο
24	In Vitro Assays of Orphan Glycosyltransferases and Their Application to Identify Notch Xylosyltransferases. Methods in Molecular Biology, 2013, 1022, 307-320.	0.9	4
25	C.Âelegans DPY-19 Is a C-Mannosyltransferase Glycosylating Thrombospondin Repeats. Molecular Cell, 2013, 50, 295-302.	9.7	106
26	Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. Journal of Medical Genetics, 2013, 50, 733-739.	3.2	55
27	Intellectual disability and bleeding diathesis due to deficient CMP–sialic acid transport. Neurology, 2013, 81, 681-687.	1.1	42
28	Characterisation of CMP‧ialic Acid Transporter Substrate Recognition. ChemBioChem, 2013, 14, 1936-1942.	2.6	10
29	LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE. Glycobiology, 2013, 23, 303-309.	2.5	28
30	The Câ€mannosyltransferase. FASEB Journal, 2013, 27, 824.2.	0.5	1
31	Molecular Cloning of a Xylosyltransferase That Transfers the Second Xylose to O-Glucosylated Epidermal Growth Factor Repeats of Notch. Journal of Biological Chemistry, 2012, 287, 2739-2748.	3.4	76
32	Functional UDP-xylose Transport across the Endoplasmic Reticulum/Golgi Membrane in a Chinese Hamster Ovary Cell Mutant Defective in UDP-xylose Synthase. Journal of Biological Chemistry, 2009, 284, 2576-2583.	3.4	61
33	A Syndrome with Congenital Neutropenia and Mutations in <i>G6PC3</i> . New England Journal of Medicine, 2009, 360, 32-43.	27.0	331
34	A CMP-sialic acid transporter cloned from Arabidopsis thaliana. Carbohydrate Research, 2008, 343, 2148-2152.	2.3	42
35	A Novel Clinical Syndrome Associating Severe Congenital Neutropenia and Complex Developmental Aberrations Caused by Deficiency of G6PC3. Blood, 2008, 112, 5-5.	1.4	3
36	Functional expression of the CMP-sialic acid transporter in Escherichia coli and its identification as a simple mobile carrier. Glycobiology, 2005, 16, 73-81.	2.5	25

#	Article	IF	CITATIONS
37	The Human Solute Carrier Gene SLC35B4 Encodes a Bifunctional Nucleotide Sugar Transporter with Specificity for UDP-Xylose and UDP-N-Acetylglucosamine. Journal of Biological Chemistry, 2005, 280, 27230-27235.	3.4	100
38	Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology, 2005, 15, 905-911.	2.5	49