Catherine Riou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2240706/publications.pdf

Version: 2024-02-01

50 papers

2,567 citations

236925 25 h-index 223800 46 g-index

61 all docs

61 docs citations

61 times ranked 3970 citing authors

#	Article	IF	Citations
1	Rapid, simplified whole blood-based multiparameter assay to quantify and phenotype SARS-CoV-2-specific T-cells. European Respiratory Journal, 2022, 59, 2100285.	6.7	14
2	T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 2022, 603, 488-492.	27.8	430
3	Histone acetylome-wide associations in immune cells from individuals with active Mycobacterium tuberculosis infection. Nature Microbiology, 2022, 7, 312-326.	13.3	9
4	Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Science Translational Medicine, 2022, 14, .	12.4	77
5	Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunology, 2021, 14, 491-499.	6.0	33
6	Dysregulation of the Immune Environment in the Airways During HIV Infection. Frontiers in Immunology, 2021, 12, 707355.	4.8	6
7	Relationship of SARS-CoV-2–specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. Journal of Clinical Investigation, 2021, 131, .	8.2	113
8	Immunological Correlates of the HIV-1 Replication-Competent Reservoir Size. Clinical Infectious Diseases, 2021, 73, 1528-1531.	5.8	4
9	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	38
10	Inflammatory profile of patients with tuberculosis with or without HIV-1 co-infection: a prospective cohort study and immunological network analysis. Lancet Microbe, The, 2021, 2, e375-e385.	7.3	12
11	Th22 Cells Are a Major Contributor to the Mycobacterial CD4+ T Cell Response and Are Depleted During HIV Infection. Journal of Immunology, 2021, 207, 1239-1249.	0.8	10
12	Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host and Microbe, 2021, 29, 1611-1619.e5.	11.0	106
13	Kaposi's Sarcoma-Associated Herpesvirus, but Not Epstein-Barr Virus, Co-infection Associates With Coronavirus Disease 2019 Severity and Outcome in South African Patients. Frontiers in Microbiology, 2021, 12, 795555.	3.5	9
14	Escape from recognition of SARS-CoV-2 Beta variant spike epitopes but overall preservation of T cell immunity Science Translational Medicine, 2021, , eabj6824.	12.4	11
15	Tuberculosis Antigen-Specific T-Cell Responses During the First 6 Months of Antiretroviral Treatment. Journal of Infectious Diseases, 2020, 221, 162-167.	4.0	9
16	Disease extent and antiâ€tubercular treatment response correlates with <i>Mycobacterium tuberculosis</i> à€specific CD4 Tâ€cell phenotype regardless of HIVâ€1 status. Clinical and Translational Immunology, 2020, 9, e1176.	3.8	37
17	Immune Responses to Mycobacterium tuberculosis and the Impact of HIV Infection., 2019,, 57-72.		1
18	The Immune Response to <i>Mycobacterium tuberculosis</i> ion HIV-1-Coinfected Persons. Annual Review of Immunology, 2018, 36, 603-638.	21.8	85

#	Article	IF	Citations
19	The effect of antiretroviral treatment on selected genes in whole blood from HIV-infected adults sensitised by Mycobacterium tuberculosis. PLoS ONE, 2018, 13, e0209516.	2.5	3
20	Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nature Microbiology, 2018, 3, 1198-1205.	13.3	48
21	Residual T cell activation and skewed CD8+ T cell memory differentiation despite antiretroviral therapy-induced HIV suppression. Clinical Immunology, 2018, 195, 127-138.	3.2	22
22	Effect of Antiretroviral Therapy on the Memory and Activation Profiles of B Cells in HIV-Infected African Women. Journal of Immunology, 2017, 198, 1220-1228.	0.8	18
23	Effect of HIV on the Frequency and Number of Mycobacterium tuberculosis–Specific CD4+ T Cells in Blood and Airways During Latent M. tuberculosis Infection. Journal of Infectious Diseases, 2017, 216, 1550-1560.	4.0	28
24	Characterization of <i>Mycobacterium tuberculosis–</i> Specific Cells Using MHC Class II Tetramers Reveals Phenotypic Differences Related to HIV Infection and Tuberculosis Disease. Journal of Immunology, 2017, 199, 2440-2450.	0.8	40
25	Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals. Frontiers in Immunology, 2017, 8, 968.	4.8	89
26	HIV Skews the Lineage-Defining Transcriptional Profile of <i>Mycobacterium tuberculosis</i> Ĉi>â€"Specific CD4+ T Cells. Journal of Immunology, 2016, 196, 3006-3018.	0.8	27
27	Selective reduction of IFN- \hat{l}^3 single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis, 2016, 101, 25-30.	1.9	19
28	Teaching advanced flow cytometry in Africa: 10 years of lessons learned. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 971-974.	1.5	2
29	Activation Profile of <i>Mycobacterium tuberculosis</i> à€"Specific CD4 ⁺ T Cells Reflects Disease Activity Irrespective of HIV Status. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1307-1310.	5.6	60
30	Restoration of CD4+ Responses to Copathogens in HIV-Infected Individuals on Antiretroviral Therapy Is Dependent on T Cell Memory Phenotype. Journal of Immunology, 2015, 195, 2273-2281.	0.8	24
31	Evaluating potential T-cell epitope peptides for detecting HIV-specific T cell responses in a highly diverse HIV-1 epidemic from Cameroon. Aids, 2015, 29, 635-639.	2.2	2
32	Differential Impact of Magnitude, Polyfunctional Capacity, and Specificity of HIV-Specific CD8 ⁺ T Cell Responses on HIV Set Point. Journal of Virology, 2014, 88, 1819-1824.	3.4	36
33	Maturation of Innate Responses to Mycobacteria over the First Nine Months of Life. Journal of Immunology, 2014, 192, 4833-4843.	0.8	33
34	A Subset of Circulating Blood Mycobacteria-Specific CD4 T Cells Can Predict the Time to Mycobacterium tuberculosis Sputum Culture Conversion. PLoS ONE, 2014, 9, e102178.	2.5	30
35	Programmed Death-1 Is a Marker for Abnormal Distribution of Naive/Memory T Cell Subsets in HIV-1 Infection. Journal of Immunology, 2013, 191, 2194-2204.	0.8	81
36	Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. Journal of Clinical Investigation, 2013, 123, 380-93.	8.2	165

#	Article	IF	CITATIONS
37	Distinct Kinetics of Gag-Specific CD4+ and CD8+ T Cell Responses during Acute HIV-1 Infection. Journal of Immunology, 2012, 188, 2198-2206.	0.8	24
38	Increased Memory Differentiation Is Associated with Decreased Polyfunctionality for HIV but Not for Cytomegalovirus-Specific CD8+T Cells. Journal of Immunology, 2012, 189, 3838-3847.	0.8	18
39	Effect of Standard Tuberculosis Treatment on Plasma Cytokine Levels in Patients with Active Pulmonary Tuberculosis. PLoS ONE, 2012, 7, e36886.	2.5	81
40	Fluidity of HIV-1-Specific T-Cell Responses during Acute and Early Subtype C HIV-1 Infection and Associations with Early Disease Progression. Journal of Virology, 2010, 84, 12018-12029.	3.4	26
41	A Steady State of CD4+ T Cell Memory Maturation and Activation Is Established during Primary Subtype C HIV-1 Infection. Journal of Immunology, 2010, 184, 4926-4935.	0.8	23
42	Association of HIV-Specific and Total CD8+ T Memory Phenotypes in Subtype C HIV-1 Infection with Viral Set Point. Journal of Immunology, 2009, 182, 4751-4761.	0.8	75
43	Human Immunodeficiency Virus-Specific Gamma Interferon Enzyme-Linked Immunospot Assay Responses Targeting Specific Regions of the Proteome during Primary Subtype C Infection Are Poor Predictors of the Course of Viremia and Set Point. Journal of Virology, 2009, 83, 470-478.	3.4	63
44	Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nature Medicine, 2008, 14, 266-274.	30.7	139
45	Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. Journal of Experimental Medicine, 2007, 204, 79-91.	8.5	199
46	IL-4 influences the differentiation and the susceptibility to activation-induced cell death of human naive CD8+ T cells. International Immunology, 2006, 18, 827-835.	4.0	18
47	Synergistic Regulation of Immunoreceptor Signaling by SLP-76-Related Adaptor Clnk and Serine/Threonine Protein Kinase HPK-1. Molecular and Cellular Biology, 2001, 21, 6102-6112.	2.3	49
48	Susceptibility of Differentiated Thyrocytes in Primary Culture to Undergo Apoptosis after Exposure to Hydrogen Peroxide: Relation with the Level of Expression of Apoptosis Regulatory Proteins, Bcl-2 and Bax*. Endocrinology, 1999, 140, 1990-1997.	2.8	30
49	Cellular immunity in HIV: a synthesis of responses to preserve self. , 0, , 127-154.		0
50	Characterization of <i>Mycobacterium tuberculosis</i> ê"Specific Th22 Cells and the Effect of Tuberculosis Disease and HIV Coinfection. Journal of Immunology, 0, , ji2200140.	0.8	2