Jose Antonio Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239709/publications.pdf

Version: 2024-02-01

218677 233421 2,200 63 26 45 citations g-index h-index papers 65 65 65 2178 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Slt2 Is Required to Activate ER-Stress-Protective Mechanisms through TORC1 Inhibition and Hexosamine Pathway Activation. Journal of Fungi (Basel, Switzerland), 2022, 8, 92.	3.5	8
2	Pho85 and PI(4,5)P2 regulate different lipid metabolic pathways in response to cold. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158557.	2.4	10
3	The formation of hybrid complexes between isoenzymes of glyceraldehydeâ€3â€phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in ⟨i⟩Saccharomyces cerevisiae⟨/i⟩. Microbial Biotechnology, 2020, 13, 562-571.	4.2	7
4	Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast. Frontiers in Cell and Developmental Biology, 2020, 8, 592159.	3.7	7
5	Hexose transport in Torulaspora delbrueckii: identification of Igt1, a new dual-affinity transporter. FEMS Yeast Research, 2020, 20, .	2.3	9
6	Myriocinâ€induced adaptive laboratory evolution of an industrial strain of <i>Saccharomyces cerevisiae</i> reveals its potential to remodel lipid composition and heat tolerance. Microbial Biotechnology, 2020, 13, 1066-1081.	4.2	17
7	The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. International Journal of Food Microbiology, 2017, 245, 59-65.	4.7	23
8	Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 314-323.	4.1	3
9	Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1319-1333.	4.1	28
10	Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae. Journal of Biotechnology, 2016, 221, 70-77.	3.8	9
11	Characterization of the S. cerevisiae inp51 mutant links phosphatidylinositol 4,5-bisphosphate levels with lipid content, membrane fluidity and cold growth. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 213-226.	2.4	23
12	Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 100.	4.0	20
13	Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2015, 468, 33-47.	3.7	31
14	Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycinâ€induced ER stress. FEBS Letters, 2015, 589, 2163-2168.	2.8	10
15	Genetic and Phenotypic Characteristics of Baker's Yeast: Relevance to Baking. Annual Review of Food Science and Technology, 2013, 4, 191-214.	9.9	57
16	Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2012, 446, 477-488.	3.7	19
17	Multicopy Suppression Screening of Saccharomyces cerevisiae Identifies the Ubiquitination Machinery as a Main Target for Improving Growth at Low Temperatures. Applied and Environmental Microbiology, 2011, 77, 7517-7525.	3.1	14
18	Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2. Microbial Cell Factories, 2010, 9, 56.	4.0	11

#	Article	IF	CITATIONS
19	Adaptive evolution of baker's yeast in a doughâ€like environment enhances freeze and salinity tolerance. Microbial Biotechnology, 2010, 3, 210-221.	4.2	29
20	Isolation and characterization of the carbon cataboliteâ€derepressing protein kinase Snf1 from the stress tolerant yeast <i>Torulaspora delbrueckii</i>): Yeast, 2010, 27, 1061-1069.	1.7	6
21	The Activity of Yeast Hog1 MAPK Is Required during Endoplasmic Reticulum Stress Induced by Tunicamycin Exposure. Journal of Biological Chemistry, 2010, 285, 20088-20096.	3.4	51
22	Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast. Applied and Environmental Microbiology, 2007, 73, 4824-4831.	3.1	29
23	Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress. Applied and Environmental Microbiology, 2007, 73, 110-116.	3.1	181
24	Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiology Reviews, 2007, 31, 327-341.	8.6	175
25	Characterization of a Torulaspora delbrueckii diploid strain with optimized performance in sweet and frozen sweet dough. International Journal of Food Microbiology, 2007, 116, 103-110.	4.7	13
26	A Downshift in Temperature Activates the High Osmolarity Glycerol (HOG) Pathway, Which Determines Freeze Tolerance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281, 4638-4645.	3.4	164
27	Regulation of Salt Tolerance by Torulaspora delbrueckii Calcineurin Target Crz1p. Eukaryotic Cell, 2006, 5, 469-479.	3.4	31
28	Hog1 Mitogen-Activated Protein Kinase Plays Conserved and Distinct Roles in the Osmotolerant Yeast Torulaspora delbrueckii. Eukaryotic Cell, 2006, 5, 1410-1419.	3.4	15
29	The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular Microbiology, 2005, 56, 228-239.	2.5	61
30	Validation of a Flour-Free Model Dough System for Throughput Studies of Baker's Yeast. Applied and Environmental Microbiology, 2005, 71, 1142-1147.	3.1	36
31	Heterologous Expression of Type I Antifreeze Peptide GS-5 in Baker's Yeast Increases Freeze Tolerance and Provides Enhanced Gas Production in Frozen Dough. Journal of Agricultural and Food Chemistry, 2005, 53, 9966-9970.	5.2	37
32	Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii. Yeast, 2005, 22, 165-175.	1.7	15
33	Cloning and characterization of the gene encoding a high-affinity maltose transporter from. FEMS Yeast Research, 2004, 4, 467-476.	2.3	16
34	Yeast cells display a regulatory mechanism in response to methylglyoxal. FEMS Yeast Research, 2004, 4, 633-641.	2.3	29
35	Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains. Antonie Van Leeuwenhoek, 2003, 84, 125-134.	1.7	68
36	Uraâ^' host strains for genetic manipulation and heterologous expression of Torulaspora delbrueckii. International Journal of Food Microbiology, 2003, 86, 79-86.	4.7	6

#	Article	IF	CITATIONS
37	A DNA region ofTorulaspora delbrueckii containing theHIS3 gene: sequence, gene order and evolution. Yeast, 2003, 20, 1359-1368.	1.7	3
38	Construction of a Trp commercial baker?s yeast strain by using food-safe-grade dominant drug resistance cassettes. FEMS Yeast Research, 2003, 4, 329-338.	2.3	10
39	Baker's yeast: challenges and future prospects. Topics in Current Genetics, 2003, , 57-97.	0.7	21
40	Isolation and characterization of the geneURA3 encoding the orotidine-5?-phosphate decarboxylase fromTorulaspora delbrueckii. Yeast, 2002, 19, 1431-1435.	1.7	11
41	The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Current Genetics, 2001, 39, 273-283.	1.7	89
42	Isolation, Purification, and Characterization of a Cold-Active Lipase fromAspergillus nidulans. Journal of Agricultural and Food Chemistry, 2000, 48, 105-109.	5.2	89
43	Stable High-Copy-Number Integration of Aspergillus oryzae α-AMYLASE cDNA in an Industrial Baker's Yeast Strain. Biotechnology Progress, 1999, 15, 459-466.	2.6	38
44	Title is missing!. Biotechnology Letters, 1999, 21, 225-229.	2.2	5
45	Engineering baker's yeast: room for improvement. Trends in Biotechnology, 1999, 17, 237-244.	9.3	106
46	Construction of a lactose-assimilating strain of baker's yeast. Yeast, 1999, 15, 1299-1305.	1.7	21
47	Expression of LIP1 and LIP2 Genes from Geotrichum Species in Baker's Yeast Strains and Their Application to the Bread-Making Process. Journal of Agricultural and Food Chemistry, 1999, 47, 803-808.	5.2	34
48	Hexokinase PII has a double cytosolic-nuclear localisation inSaccharomyces cerevisiae. FEBS Letters, 1998, 425, 475-478.	2.8	90
49	Carbon Source-Dependent Phosphorylation of Hexokinase PII and Its Role in the Glucose-Signaling Response in Yeast. Molecular and Cellular Biology, 1998, 18, 2940-2948.	2.3	112
50	Construction of Baker's Yeast Strains that Secrete Different Xylanolytic Enzymes and their use in Bread Making. Journal of Cereal Science, 1997, 26, 195-199.	3.7	17
51	Characterization of novel neopullulanase fromBacillus polymyxa. Applied Biochemistry and Biotechnology, 1997, 68, 113-120.	2.9	16
52	The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Current Genetics, 1995, 28, 101-107.	1.7	28
53	DOGR1 andDOGR2: Two genes fromSaccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast, 1995, 11, 1233-1240.	1.7	46
54	Construction of baker's yeast strains that secrete Aspergillus oryzae alpha-amylase and their use in bread making. Journal of Cereal Science, 1995, 21, 185-193.	3.7	39

#	Article	IF	CITATIONS
55	Purification and characterization of a new î±-amylase of intermediate thermal stability from the yeast Lipomyces kononenkoae. Biochemistry and Cell Biology, 1995, 73, 41-49.	2.0	46
56	Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast. Yeast, 1994, 10, 1195-1202.	1.7	29
57	Nucleotide sequence of a putative peroxisomal protein from the yeastLipomyces kononenkoae. FEMS Microbiology Letters, 1994, 122, 153-157.	1.8	6
58	Functional Properties of Low Mr Wheat Proteins. I. Isolation, Characterization and Comparison with Other Reported Low Mr wheat Proteins. Journal of Cereal Science, 1993, 17, 203-220.	3.7	4
59	Low Molecular Weight Peptides of Bread Dough and Bread. Dynamics During Fermentation and Baking. Journal of Liquid Chromatography and Related Technologies, 1992, 15, 351-367.	1.0	1
60	Variations in the gliadin pattern of flour and isolated gluten on nitrogen application Implications for baking potential and rheological properties. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1992, 194, 337-343.	0.6	6
61	Optimized separation of nonpolar and polar lipid classes from wheat flour by solidâ€phase extraction. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 387-391.	1.9	39
62	Composition and distribution of individual molecular species of major glycolipids in wheat flour. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 1019-1022.	1.9	15
63	Chemical changes in nitrogenous compounds during fermentation of sour doughs and bread doughs. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1989, 189, 12-15.	0.6	8