
Barbara Tillmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2239491/publications.pdf Version: 2024-02-01

RADRADA TILLMANN

#	Article	IF	CITATIONS
1	Implicit learning of tonality: A self-organizing approach Psychological Review, 2000, 107, 885-913.	3.8	335
2	The Cortical Topography of Tonal Structures Underlying Western Music. Science, 2002, 298, 2167-2170.	12.6	320
3	Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 2003, 16, 145-161.	3.0	236
4	Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex. Brain, 2013, 136, 1639-1661.	7.6	213
5	Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. NeuroImage, 2006, 31, 1771-1782.	4.2	164
6	Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds. Brain and Cognition, 2009, 71, 259-264.	1.8	133
7	Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders Neuropsychology, 2013, 27, 121-131.	1.3	119
8	The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 2001, 81, B11-B20.	2.2	114
9	The Feeling of Familiarity of Music and Odors: The Same Neural Signature?. Cerebral Cortex, 2007, 17, 2650-2658.	2.9	110
10	ON-LINE IDENTIFICATION OF CONGENITAL AMUSIA. Music Perception, 2008, 25, 331-343.	1.1	93
11	Music Lexical Networks. Annals of the New York Academy of Sciences, 2009, 1169, 256-265.	3.8	92
12	Effect of global structure and temporal organization on chord processing Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 184-197.	0.9	85
13	Is atypical rhythm a risk factor for developmental speech and language disorders?. Wiley Interdisciplinary Reviews: Cognitive Science, 2020, 11, e1528.	2.8	83
14	Can Musical or Painting Interventions Improve Chronic Pain, Mood, Quality of Life, and Cognition in Patients with Mild Alzheimer's Disease? Evidence from a Randomized Controlled Trial. Journal of Alzheimer's Disease, 2017, 60, 663-677.	2.6	81
15	Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages. Frontiers in Psychology, 2011, 2, 120.	2.1	73
16	Effects of Global and Local Contexts on Harmonic Expectancy. Music Perception, 1998, 16, 99-117.	1.1	72
17	Implicit Investigations of Tonal Knowledge in Nonmusician Listeners. Annals of the New York Academy of Sciences, 2005, 1060, 100-110.	3.8	71
18	Implicit Learning of Musical Timbre Sequences: Statistical Regularities Confronted With Acoustical (Dis)Similarities Journal of Experimental Psychology: Learning Memory and Cognition, 2004, 30, 1131-1142.	0.9	70

#	Article	IF	CITATIONS
19	Short―and longâ€ŧerm rhythmic interventions: perspectives for language rehabilitation. Annals of the New York Academy of Sciences, 2015, 1337, 32-39.	3.8	69
20	Promoting the use of personally relevant stimuli for investigating patients with disorders of consciousness. Frontiers in Psychology, 2015, 6, 1102.	2.1	67
21	Boosting Cognition With Music in Patients With Disorders of Consciousness. Neurorehabilitation and Neural Repair, 2015, 29, 734-742.	2.9	67
22	Impaired short-term memory for pitch in congenital amusia. Brain Research, 2016, 1640, 251-263.	2.2	65
23	A combined model of sensory and cognitive representations underlying tonal expectations in music: From audio signals to behavior Psychological Review, 2014, 121, 33-65.	3.8	64
24	Unspoken knowledge: Implicit learning of structured human dance movement Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 1570-1577.	0.9	63
25	Memory decreases for prose, but not for poetry. Memory and Cognition, 2007, 35, 628-639.	1.6	61
26	Congenital amusias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 129, 589-605.	1.8	60
27	Music and Language Perception: Expectations, Structural Integration, and Cognitive Sequencing. Topics in Cognitive Science, 2012, 4, 568-584.	1.9	55
28	Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data. Frontiers in Human Neuroscience, 2015, 9, 20.	2.0	55
29	Sensory versus cognitive components in harmonic priming Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 159-171.	0.9	55
30	Pitch-Responsive Cortical Regions in Congenital Amusia. Journal of Neuroscience, 2016, 36, 2986-2994.	3.6	51
31	Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 2006, 70, 345-358.	1.7	50
32	Judging familiarity and emotion from very brief musical excerpts. Psychonomic Bulletin and Review, 2010, 17, 335-341.	2.8	50
33	Working Memory for Tonal and Atonal Sequences during a Forward and a Backward Recognition Task. Music Perception, 2012, 29, 255-267.	1.1	49
34	Priming paradigm reveals harmonic structure processing in congenital amusia. Cortex, 2012, 48, 1073-1078.	2.4	49
35	Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders Neuropsychology, 2021, 35, 771-791.	1.3	45
36	The Relative Importance of Local and Global Structures in Music Perception. Journal of Aesthetics and Art Criticism, 2004, 62, 211-222.	0.4	44

#	Article	IF	CITATIONS
37	Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems Neuroscience, 2014, 8, 94.	2.5	44
38	Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment. Frontiers in Neuroscience, 2016, 10, 245.	2.8	44
39	Specialized neural dynamics for verbal and tonal memory: fMRI evidence in congenital amusia. Human Brain Mapping, 2019, 40, 855-867.	3.6	44
40	The costs and benefits of tonal centers for chord processing Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 470-482.	0.9	43
41	Harmonic priming in an amusic patient: The power of implicit tasks. Cognitive Neuropsychology, 2007, 24, 603-622.	1.1	43
42	Effect of rhythmic attention on the segregation of interleaved melodies. Journal of the Acoustical Society of America, 2010, 128, EL1-EL7.	1.1	42
43	The Influence of Task-Irrelevant Music on Language Processing: Syntactic and Semantic Structures. Frontiers in Psychology, 2011, 2, 112.	2.1	41
44	Fine-grained pitch processing of music and speech in congenital amusia. Journal of the Acoustical Society of America, 2011, 130, 4089-4096.	1.1	41
45	Does tonality boost short-term memory in congenital amusia?. Brain Research, 2013, 1537, 224-232.	2.2	41
46	Tonal expectations influence pitch perception. Perception & Psychophysics, 2008, 70, 841-852.	2.3	40
47	Exploration of Functional Connectivity During Preferred Music Stimulation in Patients with Disorders of Consciousness. Frontiers in Psychology, 2015, 6, 1704.	2.1	40
48	Does Formal Musical Structure Affect Perception of Musical Expressiveness?. Psychology of Music, 1996, 24, 3-17.	1.6	39
49	Auditory expectations for newly acquired structures. Quarterly Journal of Experimental Psychology, 2010, 63, 1646-1664.	1.1	37
50	New evidence of a rhythmic priming effect that enhances grammaticality judgments in children. Journal of Experimental Child Psychology, 2018, 173, 371-379.	1.4	37
51	Effect of harmonic relatedness on the detection of temporal asynchronies. Perception & Psychophysics, 2002, 64, 640-649.	2.3	35
52	Discontinuity in the enumeration of sequentially presented auditory and visual stimuli. Cognition, 2008, 107, 1135-1143.	2.2	35
53	Musical familiarity in congenital amusia: Evidence from a gating paradigm. Cortex, 2014, 59, 84-94.	2.4	35
54	Altered intrinsic connectivity of the auditory cortex in congenital amusia. Journal of Neurophysiology, 2016, 116, 88-97.	1.8	34

#	Article	IF	CITATIONS
55	Near and far transfer: Is music special?. Memory and Cognition, 2022, 50, 339-347.	1.6	33
56	Tonal Language Processing in Congenital Amusia. Annals of the New York Academy of Sciences, 2009, 1169, 490-493.	3.8	32
57	The Amusic Brain: Lost in Music, but Not in Space. PLoS ONE, 2010, 5, e10173.	2.5	32
58	Exploiting Multiple Sources of Information in Learning an Artificial Language: Human Data and Modeling. Cognitive Science, 2010, 34, 255-285.	1.7	31
59	Sensorimotor Learning Enhances Expectations During Auditory Perception. Cerebral Cortex, 2015, 25, 2238-2254.	2.9	30
60	Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia. Scientific Reports, 2016, 6, 18861.	3.3	30
61	Working memory for pitch, timbre, and words. Memory, 2013, 21, 377-395.	1.7	29
62	The implicit learning of metrical and nonmetrical temporal patterns. Quarterly Journal of Experimental Psychology, 2013, 66, 360-380.	1.1	29
63	The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 2008, 107, 1070-1083.	2.2	28
64	Categorization of Extremely Brief Auditory Stimuli: Domain-Specific or Domain-General Processes?. PLoS ONE, 2011, 6, e27024.	2.5	28
65	Temporal Aspects of the Feeling of Familiarity for Music and the Emergence of Conceptual Processing. Journal of Cognitive Neuroscience, 2010, 22, 1754-1769.	2.3	27
66	The influence of temporal regularities on the implicit learning of pitch structures. Quarterly Journal of Experimental Psychology, 2014, 67, 2360-2380.	1.1	26
67	New evidence for chunk-based models in word segmentation. Acta Psychologica, 2014, 149, 1-8.	1.5	24
68	Musical emotions in congenital amusia: Impaired recognition, but preserved emotional intensity Neuropsychology, 2018, 32, 880-894.	1.3	24
69	Tonal Priming Beyond Tonics. Music Perception, 2009, 26, 211-221.	1.1	23
70	Tonal Expectations Influence Early Pitch Processing. Journal of Cognitive Neuroscience, 2011, 23, 3095-3104.	2.3	23
71	Working Memory Is Partially Preserved during Sleep. PLoS ONE, 2012, 7, e50997.	2.5	23
72	Regularity of unit length boosts statistical learning in verbal and nonverbal artificial languages. Psychonomic Bulletin and Review, 2013, 20, 142-147.	2.8	23

#	Article	IF	CITATIONS
73	The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention. Restorative Neurology and Neuroscience, 2016, 34, 297-311.	0.7	23
74	Boosting syntax training with temporally regular musical primes in children with cochlear implants. Annals of Physical and Rehabilitation Medicine, 2018, 61, 365-371.	2.3	23
75	Short- and long-term memory for pitch and non-pitch contours: Insights from congenital amusia. Brain and Cognition, 2019, 136, 103614.	1.8	23
76	Emotional prosody in congenital amusia: Impaired and spared processes. Neuropsychologia, 2019, 134, 107234.	1.6	23
77	A stimulus-brain coupling analysis of regular and irregular rhythms in adults with dyslexia and cognition, 2020, 140, 105531.	1.8	23
78	Influence of Global Structure on Musical Target Detection and Recognition. International Journal of Psychology, 1998, 33, 107-122.	2.8	22
79	Auditory feedback in error-based learning of motor regularity. Brain Research, 2015, 1606, 54-67.	2.2	22
80	Verbal and musical short-term memory: Variety of auditory disorders after stroke. Brain and Cognition, 2017, 113, 10-22.	1.8	22
81	Effects of preference and sensory modality on behavioural reaction in patients with disorders of consciousness. Brain Injury, 2017, 31, 1307-1311.	1.2	22
82	Rhythmic and textural musical sequences differently influence syntax and semantic processing in children. Journal of Experimental Child Psychology, 2020, 191, 104711.	1.4	22
83	Discrimination of tonal and atonal music in congenital amusia: The advantage of implicit tasks. Neuropsychologia, 2016, 85, 10-18.	1.6	21
84	Learning of timing patterns and the development of temporal expectations. Psychological Research, 2011, 75, 243-258.	1.7	20
85	Thresholds of Auditory-Motor Coupling Measured with a Simple Task in Musicians and Non-Musicians: Was the Sound Simultaneous to the Key Press?. PLoS ONE, 2014, 9, e87176.	2.5	20
86	You got rhythm, or more: The multidimensionality of rhythmic abilities. Attention, Perception, and Psychophysics, 2022, 84, 1370-1392.	1.3	20
87	A module for syntactic processing in music?. Trends in Cognitive Sciences, 2006, 10, 195-196.	7.8	19
88	Influence of a tone's tonal function on temporal change detection. Perception & Psychophysics, 2007, 69, 1450-1459.	2.3	19
89	Sensory, Cognitive, and Sensorimotor Learning Effects in Recognition Memory for Music. Journal of Cognitive Neuroscience, 2016, 28, 1111-1126.	2.3	19
90	Incidental Learning of Temporal Structures Conforming to a Metrical Framework. Frontiers in Psychology, 2012, 3, 294.	2.1	18

#	Article	IF	CITATIONS
91	Metrical Presentation Boosts Implicit Learning of Artificial Grammar. PLoS ONE, 2014, 9, e112233.	2.5	18
92	Regular rhythmic primes boost P600 in grammatical error processing in dyslexic adults and matched controls. Neuropsychologia, 2020, 138, 107324.	1.6	18
93	Electrodermal reactivity to emotional stimuli in healthy subjects and patients with disorders of consciousness. Annals of Physical and Rehabilitation Medicine, 2018, 61, 401-406.	2.3	17
94	Decoding Task-Related Functional Brain Imaging Data to Identify Developmental Disorders: The Case of Congenital Amusia. Frontiers in Neuroscience, 2019, 13, 1165.	2.8	17
95	Boosting maintenance in working memory with temporal regularities Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 812-818.	0.9	17
96	Auditory and visual short-term memory: influence of material type, contour, and musical expertise. Psychological Research, 2022, 86, 421-442.	1.7	16
97	Cognitive and methodological considerations on the effects of musical expertise on speech segmentation. Annals of the New York Academy of Sciences, 2012, 1252, 108-115.	3.8	15
98	The role of expectation in music: from the score to emotions and the brain. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 105-113.	2.8	15
99	Musical and verbal shortâ€ŧerm memory: insights from neurodevelopmental and neurological disorders. Annals of the New York Academy of Sciences, 2018, 1423, 155-165.	3.8	14
100	Cerebellar patients demonstrate preserved implicit knowledge of association strengths in musical sequences. Brain and Cognition, 2008, 66, 161-167.	1.8	13
101	Familiar units prevail over statistical cues in word segmentation. Psychological Research, 2017, 81, 990-1003.	1.7	13
102	Factors affecting pitch discrimination performance in a cohort of extensively phenotyped healthy volunteers. Scientific Reports, 2017, 7, 16480.	3.3	13
103	Personality Modulates the Efficacy of Art Intervention on Chronic Pain in a Population of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 63, 617-624.	2.6	13
104	Laterality effects for musical structure processing: A dichotic listening study Neuropsychology, 2010, 24, 661-666.	1.3	12
105	Subliminal Semantic Priming in Speech. PLoS ONE, 2011, 6, e20273.	2.5	12
106	French validation of the Barcelona Music Reward Questionnaire. PeerJ, 2016, 4, e1760.	2.0	12
107	Online Detection of Tonal Pop-Out in Modulating Contexts. Music Perception, 2003, 20, 283-305.	1.1	11
108	Boosting pitch encoding with audiovisual interactions in congenital amusia. Neuropsychologia, 2015, 67, 111-120.	1.6	11

#	Article	IF	CITATIONS
109	Personal familiarity of music and its cerebral effect on subsequent speech processing. Scientific Reports, 2020, 10, 14854.	3.3	11
110	Rhythmic priming of grammaticality judgments in children: Duration matters. Journal of Experimental Child Psychology, 2020, 197, 104885.	1.4	11
111	Listeners with congenital amusia are sensitive to context uncertainty in melodic sequences. Neuropsychologia, 2021, 158, 107911.	1.6	11
112	Shared structural and temporal integration resources for music and arithmetic processing. Acta Psychologica, 2012, 140, 230-235.	1.5	10
113	Musical expectations within chord sequences: Facilitation due to tonal stability without closure effects Psychomusicology: Music, Mind and Brain, 2013, 23, 1-5.	0.3	10
114	Introduction toThe Neurosciences and Music V: Cognitive Stimulation and Rehabilitation. Annals of the New York Academy of Sciences, 2015, 1337, vii-ix.	3.8	10
115	The effect of learning an individualized song on autobiographical memory recall in individuals with Alzheimer's disease: A pilot study. Journal of Clinical and Experimental Neuropsychology, 2019, 41, 760-768.	1.3	10
116	PERCEPTION OF TONAL AND TEMPORAL STRUCTURES IN CHORD SEQUENCES BY PATIENTS WITH CEREBELLAR DAMAGE. Music Perception, 2008, 25, 271-283.	1.1	9
117	Facilitated Auditory Detection for Speech Sounds. Frontiers in Psychology, 2011, 2, 176.	2.1	9
118	Temporal regularities allow saving time for maintenance in working memory. Annals of the New York Academy of Sciences, 2018, 1424, 202-211.	3.8	8
119	Learning of pitch and time structures in an artificial grammar setting Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 1201-1214.	0.9	8
120	Implicit learning of between-group intervals in auditory temporal structures. Attention, Perception, and Psychophysics, 2016, 78, 1728-1743.	1.3	7
121	Temporal dynamics of maintenance in young and old adults. Annals of the New York Academy of Sciences, 2018, 1424, 137-148.	3.8	7
122	Expectations in culturally unfamiliar music: influences of proximal and distal cues and timbral characteristics. Frontiers in Psychology, 2013, 4, 789.	2.1	6
123	The feeling of familiarity for music in patients with a unilateral temporal lobe lesion: A gating study. Neuropsychologia, 2015, 77, 313-320.	1.6	6
124	Editorial: Music and Disorders of Consciousness: Emerging Research, Practice and Theory. Frontiers in Psychology, 2016, 7, 1273.	2.1	6
125	Expertise shapes domainâ€specific functional cerebral asymmetry during mental imagery: the case of culinary arts and music. European Journal of Neuroscience, 2017, 45, 1524-1537.	2.6	6
126	Implicit learning of artificial grammatical structures after inferior frontal cortex lesions. PLoS ONE, 2019, 14, e0222385.	2.5	6

#	Article	IF	CITATIONS
127	Implicit Processing of Pitch in Postlingually Deafened Cochlear Implant Users. Frontiers in Psychology, 2019, 10, 1990.	2.1	6
128	The Regularity of Rhythmic Primes Influences Syntax Processing in Adults. Auditory Perception & Cognition, 2019, 2, 163-179.	1.1	6
129	Implicit learning of two artificial grammars. Cognitive Processing, 2021, 22, 141-150.	1.4	6
130	Atypical beta power fluctuation while listening to an isochronous sequence in dyslexia. Clinical Neurophysiology, 2021, 132, 2384-2390.	1.5	6
131	Enhanced mismatch negativity in harmonic compared with inharmonic sounds. European Journal of Neuroscience, 2022, 56, 4583-4599.	2.6	6
132	Response: A commentary on: "Neural overlap in processing music and speech― Frontiers in Human Neuroscience, 2015, 9, 491.	2.0	5
133	Recognition of musical emotions and their perceived intensity after unilateral brain damage. Cortex, 2020, 130, 78-93.	2.4	5
134	Tonal structures benefit short-term memory for real music: Evidence from non-musicians and individuals with congenital amusia. Brain and Cognition, 2022, 161, 105881.	1.8	5
135	Development of auditory cognition in 5―to 10â€yearâ€old children: focus on musical and verbal shortâ€ŧermâ€memory. Developmental Science, 2021, , e13188.	2.4	4
136	Part IV Introduction. Annals of the New York Academy of Sciences, 2009, 1169, 214-215.	3.8	3
137	Rapid Assessment of Non-Verbal Auditory Perception in Normal-Hearing Participants and Cochlear Implant Users. Journal of Clinical Medicine, 2021, 10, 2093.	2.4	3
138	The Emotional Effect of Background Music on Selective Attention of Adults. Frontiers in Psychology, 2021, 12, 729037.	2.1	3
139	Music processing deficits in Landau-Kleffner syndrome: Four case studies in adulthood. Cortex, 2020, 129, 99-111.	2.4	3
140	Further Investigation of Harmonic Priming in Long Contexts Using Musical Timbre as Surface Marker to Control for Temporal Effects. Perceptual and Motor Skills, 2004, 98, 450-458.	1.3	2
141	Do Temporal Regularities during Maintenance Benefit Short-term Memory in the Elderly? Inhibition Capacities Matter. Experimental Aging Research, 2020, 46, 396-415.	1.2	2
142	Blunted emotion judgments of body movements in Parkinson's disease. Scientific Reports, 2021, 11, 18575.	3.3	2
143	Memory improvement with wide-awake listeners and with nonclassical guitar music Psychomusicology: Music, Mind and Brain, 2016, 26, 26-34.	0.3	2
144	Bach, Mozart, and Beethoven: Sorting piano excerpts based on perceived similarity using DiSTATIS. New Ideas in Psychology, 2020, 57, 100757.	1.9	1

#	Article	IF	CITATIONS
145	What you hear first, is what you get: Initial metrical cue presentation modulates syllable detection in sentence processing. Attention, Perception, and Psychophysics, 2021, 83, 1861-1877.	1.3	1
146	A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns. PLoS ONE, 2013, 8, e75163.	2.5	1
147	Verbal and musical memory: Selectivity of auditory disorders after stroke. Annals of Physical and Rehabilitation Medicine, 2015, 58, e69-e70.	2.3	0
148	When Visual Cues Do Not Help the Beat: Evidence for a Detrimental Effect of Moving Point-Light Figures on Rhythmic Priming. Frontiers in Psychology, 2022, 13, 807987.	2.1	0