Philip N Rather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Challenge of Multidrug-Resistant <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 3471-3484.	3.2	1,027
2	Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients Treated at the Walter Reed Army Medical Center. Antimicrobial Agents and Chemotherapy, 2006, 50, 4114-4123.	3.2	457
3	Isolation and Characterization of an Autoinducer Synthase from <i>Acinetobacter baumannii</i> . Journal of Bacteriology, 2008, 190, 3386-3392.	2.2	243
4	Complete Genome Sequence of Uropathogenic <i>Proteus mirabilis</i> , a Master of both Adherence and Motility. Journal of Bacteriology, 2008, 190, 4027-4037.	2.2	229
5	Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology (United Kingdom), 2011, 157, 2534-2544.	1.8	205
6	Acinetobacter baumannii Strain M2 Produces Type IV Pili Which Play a Role in Natural Transformation and Twitching Motility but Not Surface-Associated Motility. MBio, 2013, 4, .	4.1	182
7	Swarmer cell differentiation in Proteus mirabilis. Environmental Microbiology, 2005, 7, 1065-1073.	3.8	163
8	Rhomboid protease AarA mediates quorum-sensing inProvidencia stuartiiby activating TatA of the twin-arginine translocase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1003-1008.	7.1	144
9	Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Molecular Microbiology, 2004, 51, 437-446.	2.5	137
10	A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nature Microbiology, 2018, 3, 563-569.	13.3	120
11	Strategic Approaches to Overcome Resistance against Gram-Negative Pathogens Using β-Lactamase Inhibitors and β-Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. Journal of Medicinal Chemistry, 2018, 61, 4067-4086.	6.4	117
12	Roles of two-component regulatory systems in antibiotic resistance. Future Microbiology, 2019, 14, 533-552.	2.0	111
13	A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12208-12213.	7.1	106
14	Attenuation of Quorum Sensing in the Pathogen <i>Acinetobacter baumannii</i> Using Non-native <i>N</i> -Acyl Homoserine Lactones. ACS Chemical Biology, 2012, 7, 1719-1728.	3.4	104
15	Phase-Variable Control of Multiple Phenotypes in Acinetobacter baumannii Strain AB5075. Journal of Bacteriology, 2015, 197, 2593-2599.	2.2	102
16	<i>Acinetobacter baumannii</i> -Associated Skin and Soft Tissue Infections: Recognizing a Broadening Spectrum of Disease. Surgical Infections, 2010, 11, 49-57.	1.4	94
17	An <i>ompR-envZ</i> Two-Component System Ortholog Regulates Phase Variation, Osmotic Tolerance, Motility, and Virulence in Acinetobacter baumannii Strain AB5075. Journal of Bacteriology, 2017, 199, . -	2.2	85
18	Regulation of gene expression during swarmer cell differentiation in <i>Proteus mirabilis</i> . FEMS Microbiology Reviews, 2010, 34, 753-763.	8.6	74

PHILIP N RATHER

#	Article	IF	CITATIONS
19	Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 253.	3.9	66
20	Targeting Multidrug-Resistant <i>Acinetobacter</i> spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent. MBio, 2019, 10, .	4.1	64
21	<i>Providencia stuartii</i> Genes Activated by Cell-to-Cell Signaling and Identification of a Gene Required for Production or Activity of an Extracellular Factor. Journal of Bacteriology, 1999, 181, 7185-7191.	2.2	62
22	Aminoglycoside Heteroresistance in Acinetobacter baumannii AB5075. MSphere, 2018, 3, .	2.9	54
23	Role of Capsule in Resistance to Disinfectants, Host Antimicrobials, and Desiccation in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	52
24	The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Current Genetics, 2016, 62, 775-789.	1.7	45
25	Regulation of flhDC expression in Proteus mirabilis. Research in Microbiology, 2007, 158, 295-302.	2.1	42
26	The Lon protease regulates swarming motility and virulence gene expression in Proteus mirabilis. Journal of Medical Microbiology, 2008, 57, 931-937.	1.8	42
27	Role of the Umo Proteins and the Rcs Phosphorelay in the Swarming Motility of the Wild Type and an O-Antigen (<i>waaL</i>) Mutant of Proteus mirabilis. Journal of Bacteriology, 2012, 194, 669-676.	2.2	41
28	Loss of the WaaL O-Antigen Ligase Prevents Surface Activation of the Flagellar Gene Cascade in <i>Proteus mirabilis</i> . Journal of Bacteriology, 2010, 192, 3213-3221.	2.2	38
29	Extensively Drug-Resistant Pseudomonas aeruginosa Isolates Containing <i>bla</i> _{VIM-2} and Elements of Salmonella Genomic Island 2: a New Genetic Resistance Determinant in Northeast Ohio. Antimicrobial Agents and Chemotherapy, 2014, 58, 5929-5935.	3.2	34
30	Functional Characterization of Escherichia coli GlpG and Additional Rhomboid Proteins Using an aarA Mutant of Providencia stuartii. Journal of Bacteriology, 2006, 188, 3415-3419.	2.2	33
31	Multiple roles for a novel RNDâ€ŧype efflux system in <i>Acinetobacter baumannii</i> AB5075. MicrobiologyOpen, 2017, 6, e00418.	3.0	33
32	A Novel Gene Involved in Regulating the Flagellar Gene Cascade in Proteus mirabilis. Journal of Bacteriology, 2006, 188, 7830-7839.	2.2	27
33	Putrescine Importer PlaP Contributes to Swarming Motility and Urothelial Cell Invasion in Proteus mirabilis. Journal of Biological Chemistry, 2013, 288, 15668-15676.	3.4	27
34	Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis. Journal of Bacteriology, 2015, 197, 2499-2507.	2.2	27
35	Role of rhomboid proteases in bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2849-2854.	2.6	24
36	Copy Number of an Integron-Encoded Antibiotic Resistance Locus Regulates a Virulence and Opacity Switch in Acinetobacter baumannii AB5075. MBio, 2020, 11, .	4.1	22

PHILIP N RATHER

#	Article	lF	CITATIONS
37	Mutations Decreasing Intrinsic Î ² -Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2016, 60, 3751-3758.	3.2	20
38	Characterization of RelA in <i>Acinetobacter baumannii</i> . Journal of Bacteriology, 2020, 202, .	2.2	20
39	Isolation oflacZfusions toProteus mirabilisgenes regulated by intercellular signaling: potential role for the sugar phosphotransferase (Pts) system in regulation. FEMS Microbiology Letters, 2002, 217, 43-50.	1.8	16
40	A comprehensive and contemporary "snapshot―of β-lactamases in carbapenem resistant Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115242.	1.8	16
41	Broad Spectrum Antibiotic Xanthocillin X Effectively Kills <i>Acinetobacter baumannii via</i> Dysregulation of Heme Biosynthesis. ACS Central Science, 2021, 7, 488-498.	11.3	16
42	Characterization of a Novel Gene, <i>wosA</i> , Regulating FlhDC Expression in <i>Proteus mirabilis</i> . Journal of Bacteriology, 2008, 190, 1946-1955.	2.2	14
43	A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii. Molecular Microbiology, 1998, 28, 1345-1353.	2.5	12
44	1,2,3-Triazolylmethaneboronate: A Structure Activity Relationship Study of a Class of β-Lactamase Inhibitors against <i>Acinetobacter baumannii</i> Cephalosporinase. ACS Infectious Diseases, 2020, 6, 1965-1975.	3.8	12
45	Extraction and Visualization of Capsular Polysaccharide from Acinetobacter baumannii. Methods in Molecular Biology, 2019, 1946, 227-231.	0.9	11
46	OXA-23 β-Lactamase Overexpression in Acinetobacter baumannii Drives Physiological Changes Resulting in New Genetic Vulnerabilities. MBio, 2021, 12, e0313721.	4.1	10
47	Role of SspA in the density-dependent expression of the transcriptional activator AarP inProvidencia stuartii. FEMS Microbiology Letters, 2001, 196, 25-29.	1.8	8
48	Methods for Detecting N-Acyl Homoserine Lactone Production in Acinetobacter baumannii. Methods in Molecular Biology, 2019, 1946, 253-258.	0.9	8
49	A LysR-Type Transcriptional Regulator Controls Multiple Phenotypes in Acinetobacter baumannii. Frontiers in Cellular and Infection Microbiology, 2021, 11, 778331.	3.9	8
50	Regulation of the Swarming Inhibitor disA in Proteus mirabilis. Journal of Bacteriology, 2013, 195, 3237-3243.	2.2	6
51	Expression of the DisA amino acid decarboxylase from Proteus mirabilis inhibits motility and class 2 flagellar gene expression in Escherichia coli. Research in Microbiology, 2013, 164, 31-37.	2.1	5
52	Allelic Exchange Mutagenesis in Proteus mirabilis. Methods in Molecular Biology, 2019, 2021, 77-84.	0.9	5
53	Positive autoregulation of the flhDC operon in Proteus mirabilis. Research in Microbiology, 2018, 169, 199-204.	2.1	4
54	Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community. ISME Journal, 2022, 16, 1004-1011.	9.8	4

PHILIP N RATHER

#	Article	IF	CITATIONS
55	Distinguishing Colony Opacity Variants and Measuring Opacity Variation in Acinetobacter baumannii. Methods in Molecular Biology, 2019, 1946, 151-157.	0.9	3
56	Methods for Transposon Mutagenesis in Proteus mirabilis. Methods in Molecular Biology, 2019, 2016, 81-85.	0.9	1
57	Isolation of lacZ fusions to Proteus mirabilis genes regulated by intercellular signaling: potential role for the sugar phosphotransferase (Pts) system in regulation. FEMS Microbiology Letters, 2002, 217, 43-50.	1.8	1
58	Intercellular Signaling by Rhomboids in Eukaryotes and Prokaryotes. , 0, , 431-442.		0