Imran Rizvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2238022/publications.pdf

Version: 2024-02-01

83	5,548	34	58
papers	citations	h-index	g-index
83	83	83	7175
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chemical Reviews, 2010, 110, 2795-2838.	23.0	2,005
2	A threeâ€dimensional in vitro ovarian cancer coculture model using a highâ€throughput cell patterning platform. Biotechnology Journal, 2011, 6, 204-212.	1.8	281
3	The role of photodynamic therapy in overcoming cancer drug resistance. Photochemical and Photobiological Sciences, 2015, 14, 1476-1491.	1.6	242
4	The Molecular Basis of Vitamin D Receptor and \hat{l}^2 -Catenin Crossregulation. Molecular Cell, 2006, 21, 799-809.	4.5	238
5	Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1974-83.	3.3	184
6	Synergistic Enhancement of Carboplatin Efficacy with Photodynamic Therapy in a Three-Dimensional Model for Micrometastatic Ovarian Cancer. Cancer Research, 2010, 70, 9319-9328.	0.4	159
7	Synergism of Epidermal Growth Factor Receptor–Targeted Immunotherapy With Photodynamic Treatment of Ovarian Cancer In Vivo. Journal of the National Cancer Institute, 2005, 97, 1516-1524.	3.0	140
8	Targeted photodynamic therapy. Lasers in Surgery and Medicine, 2006, 38, 522-531.	1.1	139
9	Three-dimensional miniature endoscopy. Nature, 2006, 443, 765-765.	13.7	120
10	An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Scientific Reports, 2014, 4, 3751.	1.6	117
11	Photodynamic Therapy Synergizes with Irinotecan to Overcome Compensatory Mechanisms and Improve Treatment Outcomes in Pancreatic Cancer. Cancer Research, 2016, 76, 1066-1077.	0.4	104
12	Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E933-42.	3.3	103
13	In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. British Journal of Cancer, 2009, 101, 2015-2022.	2.9	90
14	Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology, 2022, 465, 153031.	2.0	87
15	Killing Hypoxic Cell Populations in a 3D Tumor Model with EtNBS-PDT. PLoS ONE, 2011, 6, e23434.	1.1	79
16	Ki-67 as a Molecular Target for Therapy in an <i>In vitro</i> Three-Dimensional Model for Ovarian Cancer. Cancer Research, 2010, 70, 9234-9242.	0.4	72
17	A Mechanism-Based Combination Therapy Reduces Local Tumor Growth and Metastasis in an Orthotopic Model of Prostate Cancer. Cancer Research, 2006, 66, 10953-10958.	0.4	71
18	Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. Journal of Biomedical Optics, 2010, 15, 1.	1.4	70

#	Article	lF	CITATIONS
19	Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery. Cancer Research, 2018, 78, 558-571.	0.4	70
20	Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models. Scientific Reports, 2015, 5, 10093.	1.6	69
21	<scp>PDT</scp> Dose Parameters Impact Tumoricidal Durability and Cell Death Pathways in a 3D Ovarian Cancer Model. Photochemistry and Photobiology, 2013, 89, 942-952.	1.3	63
22	<i>In vivo</i> Optical Molecular Imaging of Vascular Endothelial Growth Factor for Monitoring Cancer Treatment. Clinical Cancer Research, 2008, 14, 4146-4153.	3.2	62
23	A Combination of Visudyne and a Lipidâ€anchored Liposomal Formulation of Benzoporphyrin Derivative Enhances Photodynamic Therapy Efficacy in a 3D Model for Ovarian Cancer. Photochemistry and Photobiology, 2019, 95, 419-429.	1.3	60
24	Pegylation of charged polymer-photosensitiser conjugates: effects on photodynamic efficacy. British Journal of Cancer, 2003, 89, 937-943.	2.9	58
25	Intraperitoneal Photoimmunotherapy of Ovarian Carcinoma Xenografts in Nude Mice Using Charged Photoimmunoconjugates. Gynecologic Oncology, 2000, 76, 397-404.	0.6	56
26	Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials, 2019, 222, 119421.	5.7	55
27	Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochemistry and Photobiology, 2020, 96, 232-259.	1.3	55
28	Image-Based Quantification of Benzoporphyrin Derivative Uptake, Localization, and Photobleaching in 3D Tumor Models, for Optimization of PDT Parameters. Theranostics, 2012, 2, 827-839.	4.6	54
29	Photodynamic therapy: Promoting in vitro efficacy of photodynamic therapy by liposomal formulations of a photosensitizing agent. Lasers in Surgery and Medicine, 2018, 50, 499-505.	1.1	49
30	Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers, 2021, 13, 4318.	1.7	47
31	Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models. International Journal of Radiation Oncology Biology Physics, 2010, 76, 251-259.	0.4	46
32	Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer. British Journal of Cancer, 2000, 83, 1544-1551.	2.9	42
33	Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. Journal of Biomedical Optics, 2013, 18, 098004.	1.4	37
34	In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy. Journal of Biomedical Optics, 2008, 13, 050504.	1.4	35
35	Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget, 2018, 9, 13009-13022.	0.8	35
36	Vitamin D Receptor Activation and Photodynamic Priming Enables Durable Low-dose Chemotherapy. Molecular Cancer Therapeutics, 2020, 19, 1308-1319.	1.9	33

#	Article	IF	Citations
37	In vitro ovarian tumor growth and treatment response dynamics visualized with time-lapse OCT imaging. Optics Express, 2009, 17, 8892.	1.7	31
38	Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress. Journal of Clinical Medicine, 2020, 9, 924.	1.0	31
39	Photoimmunotherapy and Irradiance Modulation Reduce Chemotherapy Cycles and Toxicity in a Murine Model for Ovarian Carcinomatosis: Perspective and Results. Israel Journal of Chemistry, 2012, 52, 776-787.	1.0	28
40	Mechanical Characterization of 3D Ovarian Cancer Nodules Using Brillouin Confocal Microscopy. Cellular and Molecular Bioengineering, 2019, 12, 215-226.	1.0	27
41	Mechanism-informed Repurposing of Minocycline Overcomes Resistance to Topoisomerase Inhibition for Peritoneal Carcinomatosis. Molecular Cancer Therapeutics, 2018, 17, 508-520.	1.9	25
42	PuraMatrix Encapsulation of Cancer Cells. Journal of Visualized Experiments, 2009, , .	0.2	24
43	<i>In vivo</i> evaluation of battery-operated light-emitting diode-based photodynamic therapy efficacy using tumor volume and biomarker expression as endpoints. Journal of Biomedical Optics, 2015, 20, 048003.	1.4	21
44	Cancer Cellâ€ŧargeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model. Photochemistry and Photobiology, 2020, 96, 295-300.	1.3	18
45	Photodestruction of Stromal Fibroblasts Enhances Tumor Response to PDT in 3D Pancreatic Cancer Coculture Models. Photochemistry and Photobiology, 2021, 97, 416-426.	1.3	13
46	"Pointsource―Delivery of a Photosensitizer Drug and Singlet Oxygen: Eradication of Glioma Cells <i>In Vitro</i> . Photochemistry and Photobiology, 2014, 90, 1119-1125.	1.3	12
47	Hydrogels as a New Platform to Recapitulate the Tumor Microenvironment. , 2018, , 463-494.		9
48	Cabozantinib Inhibits Photodynamic Therapy-Induced Auto- and Paracrine MET Signaling in Heterotypic Pancreatic Microtumors. Cancers, 2020, 12, 1401.	1.7	9
49	Select Per- and Polyfluoroalkyl Substances (PFAS) Induce Resistance to Carboplatin in Ovarian Cancer Cell Lines. International Journal of Molecular Sciences, 2022, 23, 5176.	1.8	8
50	Magnetic resonance image-guided photodynamic therapy of xenograft pancreas tumors with verteporfin. Proceedings of SPIE, 2009, , .	0.8	6
51	Biologically relevant 3D tumor arrays: treatment response and the importance of stromal partners. Proceedings of SPIE, 2011, , .	0.8	6
52	Mechanical Modulation of Ovarian Cancer Tumor Nodules Under Flow. IEEE Transactions on Biomedical Engineering, 2022, 69, 294-301.	2.5	6
53	Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression. , 2009, , .		5
54	Visualizing photodynamic therapy response with time-lapse OCT in an in vitro model of metastatic ovarian cancer. , 2010, , .		5

#	Article	IF	CITATIONS
55	Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Letters, 2021, 504, 116-124.	3.2	5
56	CHAPTER 11. Mind the Gap: 3D Models in Photodynamic Therapy. Comprehensive Series in Photochemical and Photobiological Sciences, 2016, , 197-221.	0.3	5
57	Biologically relevant 3D tumor arrays: imaging-based methods for quantification of reproducible growth and analysis of treatment response. , 2011 , , .		4
58	Probing tumor-stroma interactions and response to photodynamic therapy in a 3D pancreatic cancer-fibroblast co-culture model. Proceedings of SPIE, 2012, , .	0.8	4
59	Critical PDT theory II: Current concepts and indications. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102923.	1.3	4
60	Photodynamic Stromal Depletion (<scp>PSD</scp>) Enhances Therapeutic Nanoparticle Delivery in <scp>3D</scp> Pancreatic Ductal Adenocarcinoma (<scp>PDAC</scp>) Tumor Models. Photochemistry and Photobiology, 0, , .	1.3	4
61	Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. Frontiers in Physics, 2019, 7, .	1.0	3
62	Molecular imaging of photodynamic therapy. , 2006, 6097, 609701.		2
63	Development of low-cost devices for image-guided photodynamic therapy treatment of oral cancer in global health settings. Proceedings of SPIE, $2016, \ldots$	0.8	2
64	Three-dimensional ovarian cancer models: imaging and therapeutic combinations. , 2010, , .		1
65	Imaging enabled platforms for development of therapeutics. , 2011, , .		1
66	Overcoming therapeutic resistance in pancreatic cancer is not a simple mix of PDT and chemotherapy: Evaluation of PDT-chemotherapy combinations in 3D tumor models. Proceedings of SPIE, 2013, , .	0.8	1
67	3D Cancer Models on Hydrogels. , 2016, , 207-256.		1
68	<title>Photoimmunotherapy of ovarian cancer (Invited Paper)</title> ., 2000, 3909, 30.		0
69	The Molecular Basis of Vitamin D Receptor and \hat{I}^2 -Catenin Crossregulation. Molecular Cell, 2006, 22, 148.	4.5	0
70	In vivo, on-line monitoring of molecular response to photodynamic therapy: molecular imaging of vascular endothelial growth factor., 2007,,.		0
71	Molecular imaging of photodynamic therapy efficacy. , 2007, , .		0
72	Intravital fiber-optic fluorescence imaging for monitoring ovarian carcinoma progression and treatment response. , 2009, , .		0

#	Article	IF	CITATIONS
73	Designing PDT-based combinations to overcome chemoresistance in heterocellular 3D tumor models (Conference Presentation)., 2016,,.		0
74	Adapting biomodulatory strategies for treatment in new contexts: pancreatic and oral cancers (Conference Presentation). , 2016 , , .		0
7 5	Mechanistic exploration of a bi-directional PDT-based combination in pancreatic cancer (Conference) Tj ETQq1 1	0.784314	ł rgBT /Overlo
76	Repurposing of tetracyclines to overcome resistance pathways associated with photochemotherapy in cancer (Conference Presentation). , $2016, , .$		0
77	In Vivo Imaging of VEGF Expression for Monitoring Molecular Response to Cancer Therapy. , 2006, , .		0
78	Abstract C83: The proliferation marker Kiâ€67 as novel molecular target in cancer therapy. , 2009, , .		0
79	Abstract 3261: Visualizing treatment response dynamics of an in vitro three-dimensional ovarian cancer model., 2010,,.		0
80	Abstract 1101: Examining the role of the mechanical microenvironment in pancreatic cancer: microrheology studies in 3D tumor models , 2013, , .		0
81	Abstract B148: Ultrasound image guided combination therapies involving photodynamic therapy and irinotecan , 2013, , .		0
82	CANCER THERAPEUTICS WITH LIGHT: ROLE OF NANOSCALE AND TISSUE ENGINEERING IN PHOTODYNAMIC THERAPY. Frontiers in Nanobiomedical Research, 2018, , 219-260.	0.1	0
83	A PerfusionÂModel to Evaluate Response toÂPhotodynamic Therapy in 3D Tumors. Methods in Molecular Biology, 2022, 2451, 49-58.	0.4	0