Deepak A Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2237670/publications.pdf

Version: 2024-02-01

136950 95266 5,939 71 32 68 h-index citations g-index papers 97 97 97 8177 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of <scp>JAK</scp> Inhibition on the Induction of Proinflammatory <scp>HLA</scp> – <scp>DR</scp> + <scp>CD90</scp> + Rheumatoid Arthritis Synovial Fibroblasts by Interferonâ€Î³. Arthritis and Rheumatology, 2022, 74, 441-452.	5.6	20
2	Identification of T Peripheral Helper (Tph) Cells. Methods in Molecular Biology, 2022, 2380, 59-76.	0.9	10
3	High incidence of proliferative and membranous nephritis in SLE patients with low proteinuria in the Accelerating Medicines Partnership. Rheumatology, 2022, 61, 4335-4343.	1.9	6
4	T peripheral helper cells in autoimmune diseases*. Immunological Reviews, 2022, 307, 191-202.	6.0	39
5	SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Science Immunology, 2022, 7, eabf2846.	11.9	31
6	Urine Proteomics and Renal <scp>Singleâ€Cell</scp> Transcriptomics Implicate Interleukinâ€16 in Lupus Nephritis. Arthritis and Rheumatology, 2022, 74, 829-839.	5.6	38
7	Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Annals of the Rheumatic Diseases, 2022, 81, 805-814.	0.9	11
8	Rheumatoid arthritis disease activity assessed by patient-reported outcomes and flow cytometry before and after an additional dose of COVID-19 vaccine. Annals of the Rheumatic Diseases, 2022, 81, 1045-1048.	0.9	9
9	Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate. Nature Immunology, 2022, 23, 446-457.	14.5	37
10	Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight, 2022, 7, .	5.0	20
11	Longitudinal Immune Cell Profiling in Patients With Early Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2022, 74, 1808-1821.	5.6	18
12	<i>TET2</i> -mutant clonal hematopoiesis and risk of gout. Blood, 2022, 140, 1094-1103.	1.4	57
13	Granzyme K $<$ sup $>+sup> CD8 T cells form a core population in inflamed human tissue. Science Translational Medicine, 2022, 14, .$	12.4	74
14	The Immunopathology of Giant Cell Arteritis Across Disease Spectra. Frontiers in Immunology, 2021, 12, 623716.	4.8	30
15	Promise and complexity of lupus mouse models. Nature Immunology, 2021, 22, 683-686.	14.5	5
16	Integrated genomic analyses of cutaneous T-cell lymphomas reveal the molecular bases for disease heterogeneity. Blood, 2021, 138, 1225-1236.	1,4	49
17	Patterns of Tâ€Cell Phenotypes in Rheumatic Diseases From Singleâ€Cell Studies of Tissue. ACR Open Rheumatology, 2021, 3, 601-613.	2.1	8
18	The Power of Systems Biology. Rheumatic Disease Clinics of North America, 2021, 47, 335-350.	1.9	9

#	Article	IF	CITATIONS
19	Safety of procuring research tissue during a clinically indicated kidney biopsy from patients with lupus: data from the Accelerating Medicines Partnership RA/SLE Network. Lupus Science and Medicine, 2021, 8, e000522.	2.7	5
20	IL- $1\hat{l}^2$ â \in "driven osteoclastogenic Tregs accelerate bone erosion in arthritis. Journal of Clinical Investigation, 2021, 131, .	8.2	40
21	Arthritis flares mediated by tissue-resident memory TÂcells in the joint. Cell Reports, 2021, 37, 109902.	6.4	44
22	The Association between Clonal Hematopoiesis and Gout. Blood, 2021, 138, 595-595.	1.4	4
23	Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nature Reviews Nephrology, 2020, 16, 238-250.	9.6	48
24	Gray platelet syndrome: immunity goes awry. Blood, 2020, 136, 1898-1900.	1.4	2
25	Adverse Effects of Low-Dose Methotrexate. Annals of Internal Medicine, 2020, 172, 369.	3.9	126
26	Allele-specific expression changes dynamically during T cell activation in HLA and other autoimmune loci. Nature Genetics, 2020, 52, 247-253.	21.4	85
27	Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell, 2020, 26, 542-557.e11.	11.1	114
28	Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis. JCI Insight, 2020, 5, .	5.0	43
29	Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight, 2020, 5, .	5.0	57
30	Circulating CXCR5â^PD-1hi peripheral T helper cells are associated with progression to type 1 diabetes. Diabetologia, 2019, 62, 1681-1688.	6.3	57
31	SerpinB1 controls encephalitogenic T helper cells in neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20635-20643.	7.1	23
32	Multiplexed enrichment and genomic profiling of peripheral blood cells reveal subset-specific immune signatures. Science Advances, 2019, 5, eaau9223.	10.3	25
33	The immune cell landscape in kidneys of patients with lupus nephritis. Nature Immunology, 2019, 20, 902-914.	14.5	501
34	The rise of peripheral T helper cells in autoimmune disease. Nature Reviews Rheumatology, 2019, 15, 453-454.	8.0	6
35	HBEGF ⁺ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Science Translational Medicine, 2019, 11, .	12.4	143
36	Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nature Immunology, 2019, 20, 928-942.	14.5	760

#	Article	IF	Citations
37	Utilizing a PTPN22 gene signature to predict response to targeted therapies in rheumatoid arthritis. Journal of Autoimmunity, 2019, 101, 121-130.	6.5	5
38	AB1079â€CHECKPOINT INHIBITOR-ASSOCIATED ARTHRITIS: PHENOTYPES AND CYTOKINE ASSOCIATIONS. , 20 .	19,,	0
39	AB0167â€SINGLE CELL RNA EXPRESSION IN LUPUS NEPHRITIS COMPARING AFRICAN-AMERICAN AND CAUCAS PATIENTS IDENTIFIES DIFFERENTIAL EXPRESSION OF TYPE I INTERFERON PATHWAY. , 2019, , .	IAN	O
40	Plateletpheresis-associated lymphopenia in frequent platelet donors. Blood, 2019, 133, 605-614.	1.4	17
41	PD-1hiCXCR5– T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight, 2019, 4, .	5.0	171
42	Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nature Communications, 2018, 9, 789.	12.8	368
43	Al-19â€T peripheral helper cells are expanded in the circulation of active SLE patients and correlate with CD21 ^{low} B cells., 2018,,.		2
44	Mixed-effects association of single cells identifies an expanded effector CD4 $<$ sup>+ $<$ /sup> T cell subset in rheumatoid arthritis. Science Translational Medicine, 2018, 10, .	12.4	119
45	Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial. Genome Biology, 2018, 19, 168.	8.8	36
46	T Cells That Help B Cells in Chronically Inflamed Tissues. Frontiers in Immunology, 2018, 9, 1924.	4.8	132
47	Editorial: Lymphocyte Highs and Lows With Baricitinib. Arthritis and Rheumatology, 2018, 70, 1897-1900.	5.6	0
48	Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Research and Therapy, 2018, 20, 139.	3.5	93
49	Mass Cytometry Identifies T Cell Populations Associated with Severe Hepatotoxicity in CLL Patients on Upfront Idelalisib. Blood, 2018, 132, 4413-4413.	1.4	2
50	Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature, 2017, 542, 110-114.	27.8	767
51	Leveraging blood and tissue CD4+ T cell heterogeneity at the single cell level to identify mechanisms of disease in rheumatoid arthritis. Current Opinion in Immunology, 2017, 49, 27-36.	5.5	15
52	Rheumatoid arthritis-associated RBPJ polymorphism alters memory CD4 ⁺ T cells. Human Molecular Genetics, 2016, 25, 404-417.	2.9	8
53	A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight, 2016, 1, e90045.	5.0	50
54	Immune cell profiling to guide therapeutic decisions in rheumatic diseases. Nature Reviews Rheumatology, 2015, 11, 541-551.	8.0	62

#	Article	IF	Citations
55	Myeloperoxidase-antineutrophil Cytoplasmic Antibodies (MPO-ANCA) and Proteinase 3-ANCA without Immunofluorescent ANCA Found by Routine Clinical Testing. Journal of Rheumatology, 2015, 42, 847-852.	2.0	19
56	In the Thick of It. New England Journal of Medicine, 2013, 368, 1732-1738.	27.0	4
57	Extrapulmonary Manifestations of Sarcoidosis. Rheumatic Disease Clinics of North America, 2013, 39, 277-297.	1.9	99
58	Reperfusion Injury Intensifies the Adaptive Human T Cell Alloresponse in a Human-Mouse Chimeric Artery Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 353-360.	2.4	25
59	Platelets signal and tumors take off. Blood, 2012, 120, 4667-4668.	1.4	10
60	Transforming Growth Factor Beta Expression by Human Vascular Cells Inhibits Interferon Gamma Production and Arterial Media Injury by Alloreactive Memory T Cells. American Journal of Transplantation, 2011, 11, 2332-2341.	4.7	24
61	Neutralizing IL-6 Reduces Human Arterial Allograft Rejection by Allowing Emergence of CD161+ CD4+ Regulatory T Cells. Journal of Immunology, 2011, 187, 6268-6280.	0.8	54
62	Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4669-4674.	7.1	495
63	Interleukin-17 and Interferon-l̂³ Are Produced Concomitantly by Human Coronary Artery–Infiltrating T Cells and Act Synergistically on Vascular Smooth Muscle Cells. Circulation, 2009, 119, 1424-1432.	1.6	369
64	CXCL12 Induction of Inducible Nitric Oxide Synthase in Human CD8 T Cells. Journal of Heart and Lung Transplantation, 2008, 27, 1333-1339.	0.6	17
65	Dysferlin Deficiency Shows Compensatory Induction of Rab27A/Slp2a That May Contribute to Inflammatory Onset. American Journal of Pathology, 2008, 173, 1476-1487.	3.8	38
66	Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. Journal of Experimental Medicine, 2008, 205, 3145-3158.	8.5	80
67	Amelioration of Human Allograft Arterial Injury by Atorvastatin or Simvastatin Correlates With Reduction of Interferon-Î ³ Production by Infiltrating T Cells. Transplantation, 2008, 86, 719-727.	1.0	18
68	Endothelial Injury, Alarmins, and Allog raft Rejection. Critical Reviews in Immunology, 2008, 28, 229-248.	0.5	41
69	Alloimmunity to Human Endothelial Cells Derived from Cord Blood Progenitors. Journal of Immunology, 2007, 179, 7488-7496.	0.8	37
70	IL- $1\hat{l}\pm$ and IL- $1\hat{l}^2$ Are Endogenous Mediators Linking Cell Injury to the Adaptive Alloimmune Response. Journal of Immunology, 2007, 179, 6536-6546.	0.8	83
71	Clarifying the boundaries between the inflammatory and dystrophic myopathies: insights from molecular diagnostics and microarrays. Rheumatic Disease Clinics of North America, 2002, 28, 743-757.	1.9	52