
Philip J Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236966/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	2.4-Ã structure of the double-ring <i>Gemmatimonas phototrophica</i> photosystem. Science Advances, 2022, 8, eabk3139.	10.3	16
2	Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. Science Advances, 2022, 8, eabj4437.	10.3	9
3	Developmental acclimation of the thylakoid proteome to light intensity in <i>Arabidopsis</i> . Plant Journal, 2021, 105, 223-244.	5.7	43
4	Production of trimeric SARSâ€CoVâ€2 spike protein by CHO cells for serological COVIDâ€19 testing. Biotechnology and Bioengineering, 2021, 118, 1013-1021.	3.3	33
5	Structures of <i>Rhodopseudomonas palustris</i> RC-LH1 complexes with open or closed quinone channels. Science Advances, 2021, 7, .	10.3	38
6	How the O2-dependent Mg-protoporphyrin monomethyl ester cyclase forms the fifth ring of chlorophylls. Nature Plants, 2021, 7, 365-375.	9.3	6
7	Cryo-EM structure of the monomeric <i>Rhodobacter sphaeroides</i> RC–LH1 core complex at 2.5â€Ã Biochemical Journal, 2021, 478, 3775-3790.	3.7	33
8	Comparative proteomics of thylakoids from <i>Arabidopsis</i> grown in laboratory and field conditions. Plant Direct, 2021, 5, e355.	1.9	4
9	Cryo-EM structure of the dimeric <i>Rhodobacter sphaeroides</i> RC-LH1 core complex at 2.9â€Ã: the structural basis for dimerisation. Biochemical Journal, 2021, 478, 3923-3937.	3.7	26
10	Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochemical Journal, 2020, 477, 4021-4036.	3.7	15
11	Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. Nature Plants, 2019, 5, 879-889.	9.3	22
12	Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli. Applied and Environmental Microbiology, 2019, 86, .	3.1	12
13	Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium <i>Synechocystis</i> sp strain PCC 6803. Plant Cell, 2019, 31, 2912-2928.	6.6	12
14	Probing the local lipid environment of the cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic acid. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 215-225.	1.0	29
15	Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 119-128.	1.0	19
16	Plant and algal chlorophyll synthases function in <i>Synechocystis</i> and interact with the YidC/Alb3 membrane insertase. FEBS Letters, 2018, 592, 3062-3073.	2.8	17
17	PufQ regulates porphyrin flux at the haem/bacteriochlorophyll branchpoint of tetrapyrrole biosynthesis via interactions with ferrochelatase. Molecular Microbiology, 2017, 106, 961-975.	2.5	9
18	Synthesis of Chlorophyll-Binding Proteins in a Fully Segregated Δycf54 Strain of the Cyanobacterium Synechocystis PCC 6803. Frontiers in Plant Science, 2016, 7, 292.	3.6	25

Philip J Jackson

#	Article	IF	CITATIONS
19	Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina. Journal of Bacteriology, 2016, 198, 1393-1400.	2.2	11
20	PucC and LhaA direct efficient assembly of the lightâ€harvesting complexes in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2016, 99, 307-327.	2.5	29
21	Biosynthesis of Chlorophyll <i>a</i> in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll–Protein Complex. ACS Synthetic Biology, 2016, 5, 948-954.	3.8	33
22	Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 189-201.	1.0	84
23	A Cyanobacterial Chlorophyll Synthase-HliD Complex Associates with the Ycf39 Protein and the YidC/Alb3 Insertase Â. Plant Cell, 2014, 26, 1267-1279.	6.6	125
24	Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1769-1780.	1.0	99
25	Aberrant Assembly Complexes of the Reaction Center Light-harvesting 1 PufX (RC-LH1-PufX) Core Complex of Rhodobacter sphaeroides Imaged by Atomic Force Microscopy. Journal of Biological Chemistry, 2014, 289, 29927-29936.	3.4	21
26	Three-Dimensional Structure of the <i>Rhodobacter sphaeroides</i> RC-LH1-PufX Complex: Dimerization and Quinone Channels Promoted by PufX. Biochemistry, 2013, 52, 7575-7585.	2.5	122
27	Conserved Chloroplast Open-reading Frame ycf54 Is Required for Activity of the Magnesium Protoporphyrin Monomethylester Oxidative Cyclase in Synechocystis PCC 6803. Journal of Biological Chemistry, 2012, 287, 27823-27833.	3.4	83
28	Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME Journal, 2012, 6, 875-885.	9.8	100
29	Quantitative proteomic analysis of intracytoplasmic membrane development in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2012, 84, 1062-1078.	2.5	21
30	A Combined Shotgun and Multidimensional Proteomic Analysis of the Insoluble Subproteome of the Obligate Thermophile,GeobacillusthermoleovoransT80. Journal of Proteome Research, 2006, 5, 2465-2473.	3.7	13
31	Multidimensional Proteomic Analysis of the Soluble Subproteome of the Emerging Nosocomial PathogenOchrobactrumanthropi. Journal of Proteome Research, 2006, 5, 3145-3153.	3.7	13
32	Probing protein structure with proteases: studies of an equilibrium intermediate in protein unfolding. Biochemical Society Transactions, 1995, 23, 477S-477S.	3.4	1
33	Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H+-ATPase. Protein Engineering, Design and Selection, 1992, 5, 7-15.	2.1	84
34	A class of amphipathic proteins associated with lipid storage bodies in plants. Possible similarities with animal serum apolipoproteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1088, 86-94.	2.4	70
35	Characterization of the Major Protein Component from Aleurone Cells of Barley (Hordeum) Tj ETQq1 1 0.784314	rgBT /Ov	verlock 10 T
36	Purification and partial amino acid sequence of human urine protein 1. Journal of Chromatography A,	3.7	55

1988, 452, 359-367.

PHILIP J JACKSON

#	Article	IF	CITATIONS
37	The mitochondrial ATP synthase inhibitor protein binds near the C-terminus of the F1β-subunit. FEBS Letters, 1988, 229, 224-228.	2.8	50
38	Analysis of Proteinuria Using a Commercial System for Automated Electrophoresis and Isoelectric Focusing. Annals of Clinical Biochemistry, 1988, 25, 319-324.	1.6	21
39	Evidence for a human uteroglobin-like protein occurring in the urine of patients with renal failure. Biochemical Society Transactions, 1988, 16, 970-971.	3.4	Ο
40	Sites of protein-protein interaction on the mitochondrial F1-ATPase inhibitor protein. Biochemical Journal, 1986, 235, 577-583.	3.7	22
41	Gel-permeation high-performance liquid chromatography in the study of binding between soluble F1-ATPase and its naturally occurring inhibitor protein. Biochemical Society Transactions, 1986, 14, 1199-1200.	3.4	0
42	Sites of protein-protein interaction on the mitochondrial ATPase inhibitor protein. Biochemical Society Transactions, 1986, 14, 143-144.	3.4	2
43	Interaction between the soluble F1 ATPase and its naturally occurring inhibitor protein. Studies using hydrophilic high-performance liquid chromatography and immunoelectron microscopy. FEBS Journal, 1986, 157, 181-186.	0.2	3
44	Immunological characterization of the interaction between the F1-ATPase from ox heart mitochondria and its naturally occurring inhibitor protein. Biochemical Society Transactions, 1985, 13, 226-226.	3.4	2
45	Protein inhibitors of the mitochondrial ATPase from mammalian tissues. Biochemical Society Transactions, 1985, 13, 748-749.	3.4	Ο
46	Interaction between F1-ATPase and its naturally occurring inhibitor protein. Studies using a specific anti-inhibitor antibody. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 806, 64-74.	1.0	38
47	Binding of mitochondrial ATPase from ox heart to its naturally occurring inhibitor protein: Localization by antibody binding. Bioscience Reports, 1983, 3, 921-926.	2.4	17
48	Determination of 6-thiouric acid in human urine. Clinical Biochemistry, 1983, 16, 285-286.	1.9	7
49	Synthesis of androgen-dependent secretory proteins by rat seminal vesicles. Molecular and Cellular Endocrinology, 1981, 21, 255-262.	3.2	8
50	Androgenic Regulation of Messenger RNA Sequence Complexity in Accessory Sexual Tissues of the Male Rat Studied with Fractionated Complementary DNA. FEBS Journal, 1979, 102, 431-440.	0.2	10